These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. CASPAM: A Triple-Modality Biosensor for Multiplexed Imaging of Caspase Network Activity. Habif M; Corbat AA; Silberberg M; Grecco HE ACS Sens; 2021 Jul; 6(7):2642-2653. PubMed ID: 34191492 [TBL] [Abstract][Full Text] [Related]
3. FRET Microscopy for Real-Time Visualization of Second Messengers in Living Cells. Kraft AE; Nikolaev VO Methods Mol Biol; 2017; 1563():85-90. PubMed ID: 28324603 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous imaging of multiple cellular events using high-accuracy fluorescence polarization microscopy. Kim SY; Arai Y; Tani T; Takatsuka H; Saito Y; Kawashima T; Kawakami S; Miyawaki A; Nagai T Microscopy (Oxf); 2017 Apr; 66(2):110-119. PubMed ID: 28043995 [TBL] [Abstract][Full Text] [Related]
5. A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy. Angres B; Steuer H; Weber P; Wagner M; Schneckenburger H Cytometry A; 2009 May; 75(5):420-7. PubMed ID: 19097170 [TBL] [Abstract][Full Text] [Related]
6. Homotransfer of FRET Reporters for Live Cell Imaging. Snell NE; Rao VP; Seckinger KM; Liang J; Leser J; Mancini AE; Rizzo MA Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30314323 [TBL] [Abstract][Full Text] [Related]
7. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells. Warren SC; Margineanu A; Katan M; Dunsby C; French PM Int J Mol Sci; 2015 Jun; 16(7):14695-716. PubMed ID: 26133241 [TBL] [Abstract][Full Text] [Related]
8. In vivo imaging of hierarchical spatiotemporal activation of caspase-8 during apoptosis. Kominami K; Nagai T; Sawasaki T; Tsujimura Y; Yashima K; Sunaga Y; Tsuchimochi M; Nishimura J; Chiba K; Nakabayashi J; Koyamada K; Endo Y; Yokota H; Miyawaki A; Manabe N; Sakamaki K PLoS One; 2012; 7(11):e50218. PubMed ID: 23185580 [TBL] [Abstract][Full Text] [Related]
9. Determining the contributions of caspase-2, caspase-8 and effector caspases to intracellular VDVADase activities during apoptosis initiation and execution. Delgado ME; Olsson M; Lincoln FA; Zhivotovsky B; Rehm M Biochim Biophys Acta; 2013 Oct; 1833(10):2279-92. PubMed ID: 23747563 [TBL] [Abstract][Full Text] [Related]
10. Automated screening of AURKA activity based on a genetically encoded FRET biosensor using fluorescence lifetime imaging microscopy. Sizaire F; Le Marchand G; Pécréaux J; Bouchareb O; Tramier M Methods Appl Fluoresc; 2020 Feb; 8(2):024006. PubMed ID: 32032967 [TBL] [Abstract][Full Text] [Related]
11. Development of FRET biosensors for mammalian and plant systems. Hamers D; van Voorst Vader L; Borst JW; Goedhart J Protoplasma; 2014 Mar; 251(2):333-47. PubMed ID: 24337770 [TBL] [Abstract][Full Text] [Related]
12. Time-lapse FRET microscopy using fluorescence anisotropy. Matthews DR; Carlin LM; Ofo E; Barber PR; Vojnovic B; Irving M; Ng T; Ameer-Beg SM J Microsc; 2010 Jan; 237(1):51-62. PubMed ID: 20055918 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells. Tramier M; Coppey-Moisan M Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472 [TBL] [Abstract][Full Text] [Related]
14. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools. Watabe T; Terai K; Sumiyama K; Matsuda M ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394 [TBL] [Abstract][Full Text] [Related]
16. Single-color, ratiometric biosensors for detecting signaling activities in live cells. Ross BL; Tenner B; Markwardt ML; Zviman A; Shi G; Kerr JP; Snell NE; McFarland JJ; Mauban JR; Ward CW; Rizzo MA; Zhang J Elife; 2018 Jul; 7():. PubMed ID: 29968564 [TBL] [Abstract][Full Text] [Related]
17. The molecular mechanism of apoptosis upon caspase-8 activation: quantitative experimental validation of a mathematical model. Kominami K; Nakabayashi J; Nagai T; Tsujimura Y; Chiba K; Kimura H; Miyawaki A; Sawasaki T; Yokota H; Manabe N; Sakamaki K Biochim Biophys Acta; 2012 Oct; 1823(10):1825-40. PubMed ID: 22801217 [TBL] [Abstract][Full Text] [Related]
18. Using co-cultures expressing fluorescence resonance energy transfer based protein biosensors to simultaneously image caspase-3 and Ca2+ signaling. Chiang JJ; Truong K Biotechnol Lett; 2005 Aug; 27(16):1219-27. PubMed ID: 16158267 [TBL] [Abstract][Full Text] [Related]
19. Molecular and biophysical analysis of apoptosis using a combined quantitative phase imaging and fluorescence resonance energy transfer microscope. Eldridge WJ; Hoballah J; Wax A J Biophotonics; 2018 Dec; 11(12):e201800126. PubMed ID: 29896886 [TBL] [Abstract][Full Text] [Related]
20. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Matsuda M; Terai K Pathol Int; 2020 Jul; 70(7):379-390. PubMed ID: 32270554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]