BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30176583)

  • 21. Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network.
    Sultana S; Robinson A; Song DY; Lee J
    J Med Imaging (Bellingham); 2020 Sep; 7(5):055001. PubMed ID: 33102622
    [No Abstract]   [Full Text] [Related]  

  • 22. Prostate segmentation by sparse representation based classification.
    Gao Y; Liao S; Shen D
    Med Phys; 2012 Oct; 39(10):6372-87. PubMed ID: 23039673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models.
    Li D; Zang P; Chai X; Cui Y; Li R; Xing L
    Med Phys; 2016 Oct; 43(10):5426. PubMed ID: 27782723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast interactive medical image segmentation with weakly supervised deep learning method.
    Girum KB; Créhange G; Hussain R; Lalande A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-stage multi-task deep learning framework for simultaneous pelvic bone segmentation and landmark detection from CT images.
    Zhai H; Chen Z; Li L; Tao H; Wang J; Li K; Shao M; Cheng X; Wang J; Wu X; Wu C; Zhang X; Kettunen L; Wang H
    Int J Comput Assist Radiol Surg; 2024 Jan; 19(1):97-108. PubMed ID: 37322299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Male pelvic multi-organ segmentation on transrectal ultrasound using anchor-free mask CNN.
    Lei Y; Wang T; Roper J; Jani AB; Patel SA; Curran WJ; Patel P; Liu T; Yang X
    Med Phys; 2021 Jun; 48(6):3055-3064. PubMed ID: 33894057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cascaded cross-attention transformers and convolutional neural networks for multi-organ segmentation in male pelvic computed tomography.
    Pemmaraju R; Kim G; Mekki L; Song DY; Lee J
    J Med Imaging (Bellingham); 2024 Mar; 11(2):024009. PubMed ID: 38595327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region.
    Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H
    Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS.
    Feng Z; Nie D; Wang L; Shen D
    Proc IEEE Int Symp Biomed Imaging; 2018 Apr; 2018():885-888. PubMed ID: 30344892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI.
    Lei Y; Wang T; Tian S; Dong X; Jani AB; Schuster D; Curran WJ; Patel P; Liu T; Yang X
    Phys Med Biol; 2020 Feb; 65(3):035013. PubMed ID: 31851956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans.
    da Silva GLF; Diniz PS; Ferreira JL; França JVF; Silva AC; de Paiva AC; de Cavalcanti EAA
    Med Biol Eng Comput; 2020 Sep; 58(9):1947-1964. PubMed ID: 32566988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MetricUNet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling.
    He K; Lian C; Adeli E; Huo J; Gao Y; Zhang B; Zhang J; Shen D
    Med Image Anal; 2021 Jul; 71():102039. PubMed ID: 33831595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A fusion network model based on limited training samples for the automatic segmentation of pelvic endangered organs].
    Wu Q; Wang Y; Quan H; Wang J; Gu S; Yang W; Ge R; Liu J; Ju Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):311-316. PubMed ID: 32329284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STRAINet: Spatially Varying sTochastic Residual AdversarIal Networks for MRI Pelvic Organ Segmentation.
    Nie D; Wang L; Gao Y; Lian J; Shen D
    IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1552-1564. PubMed ID: 30307879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knowledge-Aided Convolutional Neural Network for Small Organ Segmentation.
    Zhao Y; Li H; Wan S; Sekuboyina A; Hu X; Tetteh G; Piraud M; Menze B
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1363-1373. PubMed ID: 30629519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.