BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30176584)

  • 1. Segmenting the Brain Surface From CT Images With Artifacts Using Locally Oriented Appearance and Dictionary Learning.
    Onofrey JA; Staib LH; Papademetris X
    IEEE Trans Med Imaging; 2019 Feb; 38(2):596-607. PubMed ID: 30176584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmenting the Brain Surface from CT Images with Artifacts Using Dictionary Learning for Non-rigid MR-CT Registration.
    Onofrey JA; Staib LH; Papademetris X
    Inf Process Med Imaging; 2015; 24():662-74. PubMed ID: 26221711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode localization for planning surgical resection of the epileptogenic zone in pediatric epilepsy.
    Taimouri V; Akhondi-Asl A; Tomas-Fernandez X; Peters JM; Prabhu SP; Poduri A; Takeoka M; Loddenkemper T; Bergin AM; Harini C; Madsen JR; Warfield SK
    Int J Comput Assist Radiol Surg; 2014 Jan; 9(1):91-105. PubMed ID: 23793723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shading artifact correction in breast CT using an interleaved deep learning segmentation and maximum-likelihood polynomial fitting approach.
    Ghazi P; Hernandez AM; Abbey C; Yang K; Boone JM
    Med Phys; 2019 Aug; 46(8):3414-3430. PubMed ID: 31102462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients.
    Onofrey JA; Staib LH; Papademetris X
    Neuroimage Clin; 2016; 10():291-301. PubMed ID: 26900569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mandible segmentation from CT data for virtual surgical planning using an augmented two-stepped convolutional neural network.
    Pankert T; Lee H; Peters F; Hölzle F; Modabber A; Raith S
    Int J Comput Assist Radiol Surg; 2023 Aug; 18(8):1479-1488. PubMed ID: 36637748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT.
    Srikrishna M; Pereira JB; Heckemann RA; Volpe G; van Westen D; Zettergren A; Kern S; Wahlund LO; Westman E; Skoog I; Schöll M
    Neuroimage; 2021 Dec; 244():118606. PubMed ID: 34571160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sinogram domain metal artifact correction of CT via deep learning.
    Zhu Y; Zhao H; Wang T; Deng L; Yang Y; Jiang Y; Li N; Chan Y; Dai J; Zhang C; Li Y; Xie Y; Liang X
    Comput Biol Med; 2023 Mar; 155():106710. PubMed ID: 36842222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Where Position Matters-Deep-Learning-Driven Normalization and Coregistration of Computed Tomography in the Postoperative Analysis of Deep Brain Stimulation.
    Reisert M; Sajonz BEA; Brugger TS; Reinacher PC; Russe MF; Kellner E; Skibbe H; Coenen VA
    Neuromodulation; 2023 Feb; 26(2):302-309. PubMed ID: 36424266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Improvement of Motion Artifacts in Brain MRI Using Deep Learning by Simulation Training Data].
    Muro I; Shimizu S; Tsukamoto H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022; 78(1):13-22. PubMed ID: 35046218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Framework for Segmenting Brain Tumors Using MRI and Synthetically Generated CT Images.
    Islam KT; Wijewickrema S; O'Leary S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based automated segmentation of eight brain anatomical regions using head CT images in PET/CT.
    Wang T; Xing H; Li Y; Wang S; Liu L; Li F; Jing H
    BMC Med Imaging; 2022 May; 22(1):99. PubMed ID: 35614382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning nonrigid deformations for constrained multi-modal image registration.
    Onofrey JA; Staib LH; Papademetris X
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):171-8. PubMed ID: 24505758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.