These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30176606)

  • 1. A Force Bounding Approach in Joint Space for Interacting With Dynamic Multi-Degrees of Freedom Virtual Objects.
    Baek SY; Park S; Ryu J
    IEEE Trans Haptics; 2019; 12(2):217-223. PubMed ID: 30176606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six Degree-of-Freedom Haptic Simulation of a Stringed Musical Instrument for Triggering Sounds.
    Dangxiao Wang ; Xiaohan Zhao ; Youjiao Shi ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2017; 10(2):265-275. PubMed ID: 28113956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Collision Detection for Virtual Proxy Haptic Rendering of Deformable Triangular Mesh Models.
    Ding H; Mitake H; Hasegawa S
    IEEE Trans Haptics; 2019; 12(4):624-634. PubMed ID: 31425052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey on Hand-Based Haptic Interaction for Virtual Reality.
    Tong Q; Wei W; Zhang Y; Xiao J; Wang D
    IEEE Trans Haptics; 2023; 16(2):154-170. PubMed ID: 37040254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of force haptic reappearance system based on Geomagic Touch haptic device.
    Tang Y; Liu S; Deng Y; Zhang Y; Yin L; Zheng W
    Comput Methods Programs Biomed; 2020 Jul; 190():105344. PubMed ID: 32032805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating sharp geometric features in six degrees-of-freedom haptic rendering.
    Yu G; Wang D; Zhang Y; Xiao J
    IEEE Trans Haptics; 2015; 8(1):67-78. PubMed ID: 25532133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MH-Pen: A Pen-Type Multi-Mode Haptic Interface for Touch Screens Interaction.
    Chen D; Song A; Tian L; Yu Y; Zhu L
    IEEE Trans Haptics; 2018; 11(4):555-567. PubMed ID: 29993931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation.
    Dangxiao Wang ; Xin Zhang ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2013; 6(2):167-80. PubMed ID: 24808301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contactless Haptic Display Through Magnetic Field Control.
    Lu X; Yan Y; Qi B; Qian H; Sun J; Quigley A
    IEEE Trans Haptics; 2022; 15(2):328-338. PubMed ID: 35171776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
    Li M; Sareh S; Xu G; Ridzuan MB; Luo S; Xie J; Wurdemann H; Althoefer K
    PLoS One; 2016; 11(6):e0157681. PubMed ID: 27352234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wearable Haptic Device for the Hand With Interchangeable End-Effectors.
    Kuang L; Ferro M; Malvezzi M; Prattichizzo D; Robuffo Giordano P; Chinello F; Pacchierotti C
    IEEE Trans Haptics; 2024; 17(2):129-139. PubMed ID: 37307180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.
    Han DT; Suhail M; Ragan ED
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1467-1476. PubMed ID: 29543165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Transparency of Client/Server-Based Haptic Interaction with Deformable Objects.
    Schuwerk C; Xu X; Steinbach E
    IEEE Trans Haptics; 2017; 10(2):240-253. PubMed ID: 28113990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-Actuation: A Method for Achieving High Stiffness and Low Inertia for Haptic Devices.
    Chu R; Zhang Y; Zhang H; Xu W; Ryu JH; Wang D
    IEEE Trans Haptics; 2020; 13(2):312-324. PubMed ID: 31603800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encountered-Type Haptic Interface for Representation of Shape and Rigidity of 3D Virtual Objects.
    Takizawa N; Yano H; Iwata H; Oshiro Y; Ohkohchi N
    IEEE Trans Haptics; 2017; 10(4):500-510. PubMed ID: 28829316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propping Up Virtual Reality With Haptic Proxies.
    Nilsson NC; Zenner A; Simeone AL; Johnsen K; Sandor C; Billinghurst M
    IEEE Comput Graph Appl; 2021; 41(5):104-112. PubMed ID: 34506272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic interfaces for virtual environments: perceived instability and force constancy in haptic sensing of virtual surfaces.
    Tan HZ
    Can J Exp Psychol; 2007 Sep; 61(3):265-75. PubMed ID: 17974320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.