These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30176613)

  • 1. Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neural Networks.
    Sano A; Chen W; Lopez-Martinez D; Taylor S; Picard RW
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1607-1617. PubMed ID: 30176613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal Ambulatory Sleep Detection.
    Chen W; Sano A; Martinez DL; Taylor S; McHill AW; Phillips AJK; Barger L; Klerman EB; Picard RW
    IEEE EMBS Int Conf Biomed Health Inform; 2017 Feb; 2017():465-468. PubMed ID: 29938711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device.
    Zhang X; Kou W; Chang EI; Gao H; Fan Y; Xu Y
    Comput Biol Med; 2018 Dec; 103():71-81. PubMed ID: 30342269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient embedded sleep wake classification for open-source actigraphy.
    Banfi T; Valigi N; di Galante M; d'Ascanio P; Ciuti G; Faraguna U
    Sci Rep; 2021 Jan; 11(1):345. PubMed ID: 33431918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Categorizing Sleep in Older Adults with Wireless Activity Monitors Using LSTM Neural Networks.
    Yildiz S; Opel RA; Elliott JE; Kaye J; Cao H; Lim MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3368-3372. PubMed ID: 31946603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of an innovative method, based on tilt sensing, for the assessment of activity and body position.
    Bonmati-Carrion MA; Middleton B; Revell VL; Skene DJ; Rol MA; Madrid JA
    Chronobiol Int; 2015 Jun; 32(5):701-10. PubMed ID: 25839208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep Period Time Estimation Based on Electrodermal Activity.
    Hwang SH; Seo S; Yoon HN; Jung DW; Baek HJ; Cho J; Choi JW; Lee YJ; Jeong DU; Park KS
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):115-122. PubMed ID: 26469790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep and wakefulness state detection in nocturnal actigraphy based on movement information.
    Domingues A; Paiva T; Sanches JM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):426-34. PubMed ID: 24013826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imputing missing sleep data from wearables with neural networks in real-world settings.
    Lee MP; Hoang K; Park S; Song YM; Joo EY; Chang W; Kim JH; Kim JK
    Sleep; 2024 Jan; 47(1):. PubMed ID: 37819273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is it on? An algorithm for discerning wrist-accelerometer non-wear times from sleep/wake activity.
    Kosmadopoulos A; Darwent D; Roach GD
    Chronobiol Int; 2016; 33(6):599-603. PubMed ID: 27096291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population.
    Fonseca P; van Gilst MM; Radha M; Ross M; Moreau A; Cerny A; Anderer P; Long X; van Dijk JP; Overeem S
    Sleep; 2020 Sep; 43(9):. PubMed ID: 32249911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals.
    Michielli N; Acharya UR; Molinari F
    Comput Biol Med; 2019 Mar; 106():71-81. PubMed ID: 30685634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criteria for nap identification in infants and young children using 24-h actigraphy and agreement with parental diary.
    Galland B; Meredith-Jones K; Gray A; Sayers R; Lawrence J; Taylor B; Taylor R
    Sleep Med; 2016 Mar; 19():85-92. PubMed ID: 27198952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Video-Based Actigraphy for Monitoring Wake and Sleep in Healthy Infants: A Laboratory Study.
    Long X; Otte R; Sanden EV; Werth J; Tan T
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of microsleep episodes with feature-based machine learning.
    Skorucak J; Hertig-Godeschalk A; Schreier DR; Malafeev A; Mathis J; Achermann P
    Sleep; 2020 Jan; 43(1):. PubMed ID: 31559424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep/wake measurement using a non-contact biomotion sensor.
    De Chazal P; Fox N; O'Hare E; Heneghan C; Zaffaroni A; Boyle P; Smith S; O'Connell C; McNicholas WT
    J Sleep Res; 2011 Jun; 20(2):356-66. PubMed ID: 20704645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open-source Longitudinal Sleep Analysis From Accelerometer Data (DPSleep): Algorithm Development and Validation.
    Rahimi-Eichi H; Coombs Iii G; Vidal Bustamante CM; Onnela JP; Baker JT; Buckner RL
    JMIR Mhealth Uhealth; 2021 Oct; 9(10):e29849. PubMed ID: 34612831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is segmented sleep? Actigraphy field validation for daytime sleep and nighttime wake.
    Samson DR; Yetish GM; Crittenden AN; Mabulla IA; Mabulla AZP; Nunn CL
    Sleep Health; 2016 Dec; 2(4):341-347. PubMed ID: 29073393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algorithms for sleep-wake identification using actigraphy: a comparative study and new results.
    Tilmanne J; Urbain J; Kothare MV; Wouwer AV; Kothare SV
    J Sleep Res; 2009 Mar; 18(1):85-98. PubMed ID: 19250177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.