BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30176724)

  • 1. Artificial Repeat-Structured siRNA Precursors as Tunable Regulators for Saccharomyces cerevisiae.
    Purcell O; Cao J; Müller IE; Chen YC; Lu TK
    ACS Synth Biol; 2018 Oct; 7(10):2403-2412. PubMed ID: 30176724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAi in budding yeast.
    Drinnenberg IA; Weinberg DE; Xie KT; Mower JP; Wolfe KH; Fink GR; Bartel DP
    Science; 2009 Oct; 326(5952):544-550. PubMed ID: 19745116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.
    Crook NC; Schmitz AC; Alper HS
    ACS Synth Biol; 2014 May; 3(5):307-13. PubMed ID: 24328131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life without RNAi: noncoding RNAs and their functions in Saccharomyces cerevisiae.
    Harrison BR; Yazgan O; Krebs JE
    Biochem Cell Biol; 2009 Oct; 87(5):767-79. PubMed ID: 19898526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.
    Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T
    Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins.
    Boden D; Pusch O; Silbermann R; Lee F; Tucker L; Ramratnam B
    Nucleic Acids Res; 2004; 32(3):1154-8. PubMed ID: 14966264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells.
    Miyagishi M; Sumimoto H; Miyoshi H; Kawakami Y; Taira K
    J Gene Med; 2004 Jul; 6(7):715-23. PubMed ID: 15241778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering RNAi circuits.
    Benenson Y
    Methods Enzymol; 2011; 497():187-205. PubMed ID: 21601087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of target secondary structure on RNAi efficiency.
    Shao Y; Chan CY; Maliyekkel A; Lawrence CE; Roninson IB; Ding Y
    RNA; 2007 Oct; 13(10):1631-40. PubMed ID: 17684233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic analysis of the effect of target RNA structure on RNA interference.
    Westerhout EM; Berkhout B
    Nucleic Acids Res; 2007; 35(13):4322-30. PubMed ID: 17576691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. shRNAs targeting hepatitis C: effects of sequence and structural features, and comparision with siRNA.
    Vlassov AV; Korba B; Farrar K; Mukerjee S; Seyhan AA; Ilves H; Kaspar RL; Leake D; Kazakov SA; Johnston BH
    Oligonucleotides; 2007; 17(2):223-36. PubMed ID: 17638526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions.
    Schubert S; Grünweller A; Erdmann VA; Kurreck J
    J Mol Biol; 2005 May; 348(4):883-93. PubMed ID: 15843020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila melanogaster retrotransposon and inverted repeat-derived endogenous siRNAs are differentially processed in distinct cellular locations.
    Harrington AW; McKain MR; Michalski D; Bauer KM; Daugherty JM; Steiniger M
    BMC Genomics; 2017 Apr; 18(1):304. PubMed ID: 28415970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects on RNAi of the tight structure, sequence and position of the targeted region.
    Yoshinari K; Miyagishi M; Taira K
    Nucleic Acids Res; 2004; 32(2):691-9. PubMed ID: 14762201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between the repression potency of siRNA targeting the coding region and the 3'-untranslated region of mRNA.
    Lai CF; Chen CY; Au LC
    Biomed Res Int; 2013; 2013():637850. PubMed ID: 23841081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in RNAi-Assisted Strain Engineering in
    Chen Y; Guo E; Zhang J; Si T
    Front Bioeng Biotechnol; 2020; 8():731. PubMed ID: 32714914
    [No Abstract]   [Full Text] [Related]  

  • 17. Loading of Argonaute Protein with Small Duplex RNA in Cellular Extracts.
    Gagnon KT
    Methods Mol Biol; 2016; 1421():53-67. PubMed ID: 26965257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, structure, and biological activity of dumbbell-shaped nanocircular RNAs for RNA interference.
    Abe N; Abe H; Nagai C; Harada M; Hatakeyama H; Harashima H; Ohshiro T; Nishihara M; Furukawa K; Maeda M; Tsuneda S; Ito Y
    Bioconjug Chem; 2011 Oct; 22(10):2082-92. PubMed ID: 21899349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural interpretation of the effect of GC-content on efficiency of RNA interference.
    Chan CY; Carmack CS; Long DD; Maliyekkel A; Shao Y; Roninson IB; Ding Y
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S33. PubMed ID: 19208134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.