These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 30176892)
1. Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Álvarez-Cao ME; Rico-Díaz A; Cerdán ME; Becerra M; González-Siso MI Microb Cell Fact; 2018 Sep; 17(1):137. PubMed ID: 30176892 [TBL] [Abstract][Full Text] [Related]
2. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey. Rodrigues B; Lima-Costa ME; Constantino A; Raposo S; Felizardo C; Gonçalves D; Fernandes T; Dionísio L; Peinado JM Enzyme Microb Technol; 2016 Oct; 92():41-8. PubMed ID: 27542743 [TBL] [Abstract][Full Text] [Related]
3. Production of ethanol from the mixture of beet molasses and cheese whey by a 2-deoxyglucose-resistant mutant of Kluyveromyces marxianus. Oda Y; Nakamura K FEMS Yeast Res; 2009 Aug; 9(5):742-8. PubMed ID: 19456875 [TBL] [Abstract][Full Text] [Related]
4. Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol. Álvarez-Cao ME; Cerdán ME; González-Siso MI; Becerra M Front Microbiol; 2019; 10():405. PubMed ID: 30899250 [TBL] [Abstract][Full Text] [Related]
5. The activity of beta-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate. Ornelas AP; Silveira WB; Sampaio FC; Passos FM J Appl Microbiol; 2008 Apr; 104(4):1008-13. PubMed ID: 17976174 [TBL] [Abstract][Full Text] [Related]
6. A recombinant Saccharomyces cerevisiae strain for efficient conversion of lactose in salted and unsalted cheese whey into ethanol. Tahoun MK; el-Nemr TM; Shata OH Nahrung; 2002 Oct; 46(5):321-6. PubMed ID: 12428446 [TBL] [Abstract][Full Text] [Related]
7. Engineered autolytic yeast strains secreting Kluyveromyces lactis beta-galactosidase for production of heterologous proteins in lactose media. Becerra M; Rodríguez-Belmonte E; Esperanza Cerdán M; González Siso MI J Biotechnol; 2004 Apr; 109(1-2):131-7. PubMed ID: 15063621 [TBL] [Abstract][Full Text] [Related]
8. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices. Kokkiligadda A; Beniwal A; Saini P; Vij S Appl Biochem Biotechnol; 2016 Aug; 179(8):1469-84. PubMed ID: 27059625 [TBL] [Abstract][Full Text] [Related]
9. Potential of "coalho" cheese whey as lactose source for β-galactosidase and ethanol co-production by de Carvalho CT; de Oliveira Júnior SD; de Brito Lima WB; de Medeiros FGM; de Sá Leitão ALO; Dos Santos ES; de Macedo GR; de Sousa Júnior FC Prep Biochem Biotechnol; 2020; 50(9):925-934. PubMed ID: 32496939 [TBL] [Abstract][Full Text] [Related]
11. Targeted gene manipulation of Leloir pathway genes for the constitutive expression of β-galactosidase and its transgalactosylation product galacto-oligosaccharides from Kluyveromyces lactis GG799 and knockout strains. Ponnusamy V; Sankaranarayanan M Enzyme Microb Technol; 2023 Sep; 169():110263. PubMed ID: 37311284 [TBL] [Abstract][Full Text] [Related]
12. Construction of a lactose-assimilating strain of baker's yeast. Adam AC; Prieto JA; Rubio-Texeira M; Polaina J Yeast; 1999 Sep; 15(13):1299-305. PubMed ID: 10509012 [TBL] [Abstract][Full Text] [Related]
13. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Guimarães PM; François J; Parrou JL; Teixeira JA; Domingues L Appl Environ Microbiol; 2008 Mar; 74(6):1748-56. PubMed ID: 18245248 [TBL] [Abstract][Full Text] [Related]
14. Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Silva AC; Guimarães PM; Teixeira JA; Domingues L J Ind Microbiol Biotechnol; 2010 Sep; 37(9):973-82. PubMed ID: 20535525 [TBL] [Abstract][Full Text] [Related]
15. Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Domingues L; Lima N; Teixeira JA Biotechnol Bioeng; 2001 Mar; 72(5):507-14. PubMed ID: 11460240 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Salari M; Sowti Khiabani M; Rezaei Mokarram R; Ghanbarzadeh B; Samadi Kafil H Int J Biol Macromol; 2019 Feb; 122():280-288. PubMed ID: 30342939 [TBL] [Abstract][Full Text] [Related]
17. Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity. Drozdíková E; Garaiová M; Csáky Z; Obernauerová M; Hapala I Lett Appl Microbiol; 2015 Jul; 61(1):77-84. PubMed ID: 25864715 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous hydrolysis of cheese whey and lactulose production catalyzed by β-galactosidase from Kluyveromyces lactis NRRL Y1564. de Freitas MFM; Hortêncio LC; de Albuquerque TL; Rocha MVP; Gonçalves LRB Bioprocess Biosyst Eng; 2020 Apr; 43(4):711-722. PubMed ID: 31932907 [TBL] [Abstract][Full Text] [Related]
19. Cheese whey permeate fermentation by Sampaio FC; de Faria JT; da Silva MF; de Souza Oliveira RP; Converti A Environ Technol; 2020 Oct; 41(24):3210-3218. PubMed ID: 30955482 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis. Rosa JC; Colombo LT; Alvim MC; Avonce N; Van Dijck P; Passos FM Microb Cell Fact; 2013 Jun; 12():59. PubMed ID: 23799937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]