These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3017712)

  • 1. Calcium transport in membrane vesicles of Streptococcus cremoris.
    Driessen AJ; Konings WN
    Eur J Biochem; 1986 Aug; 159(1):149-55. PubMed ID: 3017712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH.
    Driessen AJ; Kodde J; de Jong S; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2748-54. PubMed ID: 3108240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-driven amino acid uptake in Streptococcus cremoris or Clostridium acetobutylicum membrane vesicles fused with liposomes containing bacterial reaction centers.
    Crielaard W; Driessen AJ; Molenaar D; Hellingwerf KJ; Konings WN
    J Bacteriol; 1988 Apr; 170(4):1820-4. PubMed ID: 2832381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of ATP-dependent calcium transport from streptococci.
    Ambudkar SV; Lynn AR; Maloney PC; Rosen BP
    J Biol Chem; 1986 Nov; 261(33):15596-600. PubMed ID: 3096992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Ohsumi Y; Anraku Y
    J Biol Chem; 1983 May; 258(9):5614-7. PubMed ID: 6343390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris.
    Driessen AJ; de Vrij W; Konings WN
    Eur J Biochem; 1986 Feb; 154(3):617-24. PubMed ID: 3004984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport.
    Foucaud C; Poolman B
    J Biol Chem; 1992 Nov; 267(31):22087-94. PubMed ID: 1429561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris.
    Driessen AJ; Hellingwerf KJ; Konings WN
    J Biol Chem; 1987 Sep; 262(26):12438-43. PubMed ID: 3040747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles.
    Driessen AJ; de Vrij W; Konings WN
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7555-9. PubMed ID: 2999769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear relations between proton current and pH gradient in bacteriorhodopsin liposomes.
    Arents JC; van Dekken H; Hellingwerf KJ; Westerhoff HV
    Biochemistry; 1981 Sep; 20(18):5114-23. PubMed ID: 6271177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The properties of citrate transport in membrane vesicles from Bacillus subtilis.
    Bergsma J; Konings WN
    Eur J Biochem; 1983 Jul; 134(1):151-6. PubMed ID: 6305655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux.
    Otto R; Sonnenberg AS; Veldkamp H; Konings WN
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5502-6. PubMed ID: 6254084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity.
    Schumaker KS; Sze H
    J Biol Chem; 1986 Sep; 261(26):12172-8. PubMed ID: 2427517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes.
    Schnetkamp PP
    Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum.
    Driessen AJ; Ubbink-Kok T; Konings WN
    J Bacteriol; 1988 Feb; 170(2):817-20. PubMed ID: 2828326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cholesterol on the branched-chain amino acid transport system of Streptococcus cremoris.
    Zheng T; Driessen AJ; Konings WN
    J Bacteriol; 1988 Jul; 170(7):3194-8. PubMed ID: 3384806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid calcium release and proton uptake at the disk membrane of isolated cattle rod outer segments. 1. Stoichiometry of light-stimulated calcium release and proton uptake.
    Kaupp UB; Schnetkamp PP; Junge W
    Biochemistry; 1981 Sep; 20(19):5500-10. PubMed ID: 6794609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):854-9. PubMed ID: 14665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active transport of Ca2+ in bacteria: bioenergetics and function.
    Devés R; Brodie AF
    Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.