These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 3017712)
1. Calcium transport in membrane vesicles of Streptococcus cremoris. Driessen AJ; Konings WN Eur J Biochem; 1986 Aug; 159(1):149-55. PubMed ID: 3017712 [TBL] [Abstract][Full Text] [Related]
2. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH. Driessen AJ; Kodde J; de Jong S; Konings WN J Bacteriol; 1987 Jun; 169(6):2748-54. PubMed ID: 3108240 [TBL] [Abstract][Full Text] [Related]
4. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
5. Reconstitution of ATP-dependent calcium transport from streptococci. Ambudkar SV; Lynn AR; Maloney PC; Rosen BP J Biol Chem; 1986 Nov; 261(33):15596-600. PubMed ID: 3096992 [TBL] [Abstract][Full Text] [Related]
6. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. Ohsumi Y; Anraku Y J Biol Chem; 1983 May; 258(9):5614-7. PubMed ID: 6343390 [TBL] [Abstract][Full Text] [Related]
7. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake. Ueno T; Sekine T J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434 [TBL] [Abstract][Full Text] [Related]
8. Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris. Driessen AJ; de Vrij W; Konings WN Eur J Biochem; 1986 Feb; 154(3):617-24. PubMed ID: 3004984 [TBL] [Abstract][Full Text] [Related]
9. Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. Foucaud C; Poolman B J Biol Chem; 1992 Nov; 267(31):22087-94. PubMed ID: 1429561 [TBL] [Abstract][Full Text] [Related]
10. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Freisleben HJ; Zwicker K; Jezek P; John G; Bettin-Bogutzki A; Ring K; Nawroth T Chem Phys Lipids; 1995 Nov; 78(2):137-47. PubMed ID: 8565113 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris. Driessen AJ; Hellingwerf KJ; Konings WN J Biol Chem; 1987 Sep; 262(26):12438-43. PubMed ID: 3040747 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles. Driessen AJ; de Vrij W; Konings WN Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7555-9. PubMed ID: 2999769 [TBL] [Abstract][Full Text] [Related]
13. Linear relations between proton current and pH gradient in bacteriorhodopsin liposomes. Arents JC; van Dekken H; Hellingwerf KJ; Westerhoff HV Biochemistry; 1981 Sep; 20(18):5114-23. PubMed ID: 6271177 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis. van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885 [TBL] [Abstract][Full Text] [Related]
15. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis. Pitard B; Richard P; Duñach M; Rigaud JL Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429 [TBL] [Abstract][Full Text] [Related]
16. The properties of citrate transport in membrane vesicles from Bacillus subtilis. Bergsma J; Konings WN Eur J Biochem; 1983 Jul; 134(1):151-6. PubMed ID: 6305655 [TBL] [Abstract][Full Text] [Related]
17. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Otto R; Sonnenberg AS; Veldkamp H; Konings WN Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5502-6. PubMed ID: 6254084 [TBL] [Abstract][Full Text] [Related]
18. Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity. Schumaker KS; Sze H J Biol Chem; 1986 Sep; 261(26):12172-8. PubMed ID: 2427517 [TBL] [Abstract][Full Text] [Related]
19. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes. Schnetkamp PP Biochim Biophys Acta; 1980 May; 598(1):66-90. PubMed ID: 7417431 [TBL] [Abstract][Full Text] [Related]
20. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum. Driessen AJ; Ubbink-Kok T; Konings WN J Bacteriol; 1988 Feb; 170(2):817-20. PubMed ID: 2828326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]