These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3017712)

  • 21. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1976 Feb; 251(4):962-7. PubMed ID: 2608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium.
    Hirata H; Sone N; Yoshida M; Kagawa Y
    J Biochem; 1976 Jun; 79(6):1157-66. PubMed ID: 8439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1247-52. PubMed ID: 6265435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic properties of electrogenic Na+/H+ antiport in membrane vesicles from an alkalophilic Bacillus sp.
    Kitada M; Horikoshi K
    J Bacteriol; 1992 Sep; 174(18):5936-40. PubMed ID: 1325968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active transport of calcium in Neurospora plasma membrane vesicles.
    Stroobant P; Scarborough GA
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3102-6. PubMed ID: 40223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Matrix free Ca2+ in isolated chromaffin vesicles.
    Bulenda D; Gratzl M
    Biochemistry; 1985 Dec; 24(26):7760-5. PubMed ID: 3004565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trans to cis proton concentration gradients accelerate ionophore A23187-mediated net fluxes of Ca2+ across the human red cell membrane.
    Vestergaard-Bogind B; Stampe P
    Biochim Biophys Acta; 1984 Sep; 775(3):328-40. PubMed ID: 6432046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetric effects of divalent cations and protons on active Ca2+ efflux and Ca2+-ATPase in intact red blood cells.
    Xu YH; Roufogalis BD
    J Membr Biol; 1988 Oct; 105(2):155-64. PubMed ID: 2851048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the relation between rapid light-induced Ca2+ release and proton uptake in rod outer segment disk membranes.
    Schnetkamp PP; Kaupp UB
    Mol Cell Biochem; 1983; 52(1):37-48. PubMed ID: 6306440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kütz.
    Reed RH; Rowell P; Stewart WD
    Eur J Biochem; 1981 May; 116(2):323-30. PubMed ID: 6788551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium transport in membrane vesicles of Bacillus subtilis.
    de Vrij W; Bulthuis R; Postma E; Konings WN
    J Bacteriol; 1985 Dec; 164(3):1294-300. PubMed ID: 3934142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles.
    Van Leeuwen CC; Weusthuis RA; Postma E; Van den Broek PJ; Van Dijken JP
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):441-5. PubMed ID: 1318030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the proton-motive force and electron flow in light-driven solute transport in Rhodopseudomonas sphaeroides.
    Elferink MG; Friedberg I; Hellingwerf KJ; Konings WN
    Eur J Biochem; 1983 Jan; 129(3):583-7. PubMed ID: 6297888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Neurospora plasma membrane Ca2+ pump.
    Stroobant P; Dame JB; Scarborough GA
    Fed Proc; 1980 May; 39(7):2437-41. PubMed ID: 6245937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of branched-chain amino acids in membrane vesicles of Streptococcus cremoris.
    Driessen AJ; de Jong S; Konings WN
    J Bacteriol; 1987 Nov; 169(11):5193-200. PubMed ID: 2822669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system in Streptococcus lactis and Streptococcus cremoris.
    Poolman B; Smid EJ; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2755-61. PubMed ID: 3584068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.