BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30177168)

  • 1. Cyclodextrin-based poly(pseudo)rotaxanes for transdermal delivery of carvedilol.
    Taveira SF; Varela-Garcia A; Dos Santos Souza B; Marreto RN; Martin-Pastor M; Concheiro A; Alvarez-Lorenzo C
    Carbohydr Polym; 2018 Nov; 200():278-288. PubMed ID: 30177168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation.
    Marreto RN; Cardoso G; Dos Santos Souza B; Martin-Pastor M; Cunha-Filho M; Taveira SF; Concheiro A; Alvarez-Lorenzo C
    Int J Pharm; 2020 Aug; 586():119510. PubMed ID: 32531449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical fluid (SCF)-assisted preparation of cyclodextrin-based poly(pseudo)rotaxanes for transdermal purposes.
    Cardoso G; Gonzalez CAG; Santos-Rosales V; Taveira SF; Cunha-Filho M; Concheiro A; Alvarez-Lorenzo C; Marreto RN
    Drug Deliv Transl Res; 2024 Jan; 14(1):103-115. PubMed ID: 37555906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol.
    Zoghbi A; Geng T; Wang B
    AAPS PharmSciTech; 2017 Nov; 18(8):2927-2935. PubMed ID: 28432614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug/cyclodextrin solid systems in the design of hydrophilic matrices: a strategy to modulate drug delivery rate.
    Miro A; Quaglia F; Giannini L; Cappello B; La Rotonda MI
    Curr Drug Deliv; 2006 Oct; 3(4):373-8. PubMed ID: 17076639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of α-cyclodextrin on poly(pseudo)rotaxane nanoparticles self-assembled by protoporphyrin modified poly(ethylene glycol) for anticancer drug delivery.
    Xu T; Li J; Cao J; Gao W; Li L; He B
    Carbohydr Polym; 2017 Oct; 174():789-797. PubMed ID: 28821132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel carvedilol paediatric nanomicelle formulation: in-vitro characterization and in-vivo evaluation.
    Wegmann M; Parola L; Bertera FM; Taira CA; Cagel M; Buontempo F; Bernabeu E; Höcht C; Chiappetta DA; Moretton MA
    J Pharm Pharmacol; 2017 May; 69(5):544-553. PubMed ID: 27431770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclodextrin⁻Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin.
    Lorenzo-Veiga B; Sigurdsson HH; Loftsson T; Alvarez-Lorenzo C
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31096569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: implications in drug solubilization and delivery.
    Nogueiras-Nieto L; Sobarzo-Sánchez E; Gómez-Amoza JL; Otero-Espinar FJ
    Eur J Pharm Biopharm; 2012 Apr; 80(3):585-95. PubMed ID: 22182528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of novel GMO/Eudragit E100 nanostructures for enhancing oral bioavailability of carvedilol.
    Patil SS; Roy K; Choudhary B; Mahadik KR
    Drug Dev Ind Pharm; 2016 Aug; 42(8):1300-7. PubMed ID: 26651381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanospheres with polymerization ability coated by polyrotaxane.
    Osaki M; Takashima Y; Yamaguchi H; Harada A
    J Org Chem; 2009 Mar; 74(5):1858-63. PubMed ID: 19183040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclodextrin-containing poly(ethyleneoxide) tablets for the delivery of poorly soluble drugs: potential as buccal delivery system.
    Cappello B; De Rosa G; Giannini L; La Rotonda MI; Mensitieri G; Miro A; Quaglia F; Russo R
    Int J Pharm; 2006 Aug; 319(1-2):63-70. PubMed ID: 16650700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.
    Yuvaraja K; Khanam J
    J Pharm Biomed Anal; 2014 Aug; 96():10-20. PubMed ID: 24705456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of poloxamer-based nanofibers for enhanced dissolution of carvedilol.
    Kajdič S; Vrečer F; Kocbek P
    Eur J Pharm Sci; 2018 May; 117():331-340. PubMed ID: 29514051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release.
    Wang J; Williamson GS; Yang H
    Colloids Surf B Biointerfaces; 2018 May; 165():144-149. PubMed ID: 29476924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach.
    Patil GB; Patil ND; Deshmukh PK; Patil PO; Bari SB
    Artif Cells Nanomed Biotechnol; 2016; 44(1):12-9. PubMed ID: 24866725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclodextrin-poloxamer aggregates as nanocarriers in eye drop formulations: dexamethasone and amphotericin B.
    Jansook P; Pichayakorn W; Muankaew C; Loftsson T
    Drug Dev Ind Pharm; 2016 Sep; 42(9):1446-54. PubMed ID: 26765786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery.
    Ke Y; Zhang X; Liu C; Xiao M; Li H; Fan J; Fu P; Wang S; Zan F; Wu G
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():159-170. PubMed ID: 30889688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular hydrogels based on custom-made poly(ether urethane)s and cyclodextrins as potential drug delivery vehicles: design and characterization.
    Torchio A; Boffito M; Gallina A; Lavella M; Cassino C; Ciardelli G
    J Mater Chem B; 2020 Sep; 8(34):7696-7712. PubMed ID: 32724983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular Hydrogels Based on MPEG-Grafted Hyaluronic Acid and α-CD Containing HP-β-CD/Simvastatin Enhance Osteogenesis In Vivo.
    Yoon SJ; Kim EC; Noh K; Lee DW
    J Nanosci Nanotechnol; 2017 Jan; 17(1):217-23. PubMed ID: 29617547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.