These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30177168)

  • 21. Carvedilol: solubilization and cyclodextrin complexation: a technical note.
    Loftsson T; Vogensen SB; Desbos C; Jansook P
    AAPS PharmSciTech; 2008; 9(2):425-30. PubMed ID: 18431667
    [No Abstract]   [Full Text] [Related]  

  • 22. Poly(pseudo)rotaxanes formed by mixed micelles and α-cyclodextrin enhance terbinafine nail permeation to deeper layers.
    Krawczyk-Santos AP; Marreto RN; Concheiro A; Alvarez-Lorenzo C; Taveira SF
    Int J Pharm X; 2022 Dec; 4():100118. PubMed ID: 35602759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudopolyrotaxane Formation in the Synthesis of Cyclodextrin Polymers: Effects on Drug Delivery, Mechanics, and Cell Compatibility.
    Thatiparti TR; Juric D; von Recum HA
    Bioconjug Chem; 2017 Apr; 28(4):1048-1058. PubMed ID: 28117991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Mixed β-Cyclodextrin Ratios on Pluronic Rotaxanation Efficiency and Product Solubility.
    Mondjinou YA; Hyun SH; Xiong M; Collins CJ; Thong PL; Thompson DH
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23831-6. PubMed ID: 26502827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro assessment of a novel polyrotaxane-based drug delivery system integrated with a cell-penetrating peptide.
    Moon C; Kwon YM; Lee WK; Park YJ; Yang VC
    J Control Release; 2007 Dec; 124(1-2):43-50. PubMed ID: 17904680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembling polyrotaxanes: drug carriers for anticancer drugs?
    He B; Gu Z
    Future Med Chem; 2013 Apr; 5(5):495-7. PubMed ID: 23573966
    [No Abstract]   [Full Text] [Related]  

  • 27. Synthesis of paclitaxel-conjugated β-cyclodextrin polyrotaxane and its antitumor activity.
    Yu S; Zhang Y; Wang X; Zhen X; Zhang Z; Wu W; Jiang X
    Angew Chem Int Ed Engl; 2013 Jul; 52(28):7272-7. PubMed ID: 23740531
    [No Abstract]   [Full Text] [Related]  

  • 28. Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery.
    Hwang C; Lee SY; Kim HJ; Lee K; Lee J; Kim DD; Cho HJ
    Carbohydr Polym; 2021 Aug; 266():118104. PubMed ID: 34044922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and in vitro characterization of non-effervescent floating drug delivery system of poorly soluble drug, carvedilol phosphate.
    Srikanth Meka V; Wee Liang VA; Dharmalingham SR; Sheshala R; Gorajana A
    Acta Pharm; 2014 Dec; 64(4):485-94. PubMed ID: 25531788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of carvedilol transdermal patches: evaluation of physicochemical, ex vivo and mechanical properties.
    Gannu R; Vishnu YV; Kishan V; Rao YM
    PDA J Pharm Sci Technol; 2008; 62(6):391-401. PubMed ID: 19634343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled stimuli-responsive polyrotaxane core-shell particles.
    Tardy BL; Dam HH; Kamphuis MM; Richardson JJ; Caruso F
    Biomacromolecules; 2014 Jan; 15(1):53-9. PubMed ID: 24328262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An artificial molecular chaperone: poly-pseudo-rotaxane with an extensible axle.
    Osaki M; Takashima Y; Yamaguchi H; Harada A
    J Am Chem Soc; 2007 Nov; 129(46):14452-7. PubMed ID: 17973382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carvedilol nano lipid carriers: formulation, characterization and in-vivo evaluation.
    Mishra A; Imam SS; Aqil M; Ahad A; Sultana Y; Ameeduzzafar ; Ali A
    Drug Deliv; 2016 May; 23(4):1486-94. PubMed ID: 26978072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy.
    Tong H; Wang Y; Li H; Jin Q; Ji J
    Chem Commun (Camb); 2016 Mar; 52(20):3966-9. PubMed ID: 26882232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study on the effects of some polyoxyethylene alkyl ether and sorbitan fatty acid ester surfactants on the performance of transdermal carvedilol proniosomal gel using experimental design.
    Aboelwafa AA; El-Setouhy DA; Elmeshad AN
    AAPS PharmSciTech; 2010 Dec; 11(4):1591-602. PubMed ID: 21063815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reducible polyrotaxane-based pseudo-comb polycations via consecutive ATRP processes for gene delivery.
    Wen C; Hu Y; Xu C; Xu FJ
    Acta Biomater; 2016 Mar; 32():110-119. PubMed ID: 26712599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prednisolone-α-cyclodextrin-star PEG polypseudorotaxanes with controlled drug delivery properties.
    Bílková E; Sedlák M; Dvořák B; Ventura K; Knotek P; Beneš L
    Org Biomol Chem; 2010 Dec; 8(23):5423-30. PubMed ID: 20859603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin.
    Marcos X; Pérez-Casas S; Llovo J; Concheiro A; Alvarez-Lorenzo C
    Int J Pharm; 2016 Mar; 500(1-2):11-9. PubMed ID: 26795192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrolytically degradable polyrotaxane hydrogels for drug and cell delivery applications.
    Pradal C; Grøndahl L; Cooper-White JJ
    Biomacromolecules; 2015 Jan; 16(1):389-403. PubMed ID: 25469767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.