These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30177226)

  • 1. Neural circuits for learning context-dependent associations of stimuli.
    Zhu H; Paschalidis IC; Hasselmo ME
    Neural Netw; 2018 Nov; 107():48-60. PubMed ID: 30177226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural circuit model for a contextual association task inspired by recommender systems.
    Zhu H; Paschalidis IC; Chang A; Stern CE; Hasselmo ME
    Hippocampus; 2020 Apr; 30(4):384-395. PubMed ID: 32057161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent neural networks that learn multi-step visual routines with reinforcement learning.
    Mollard S; Wacongne C; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2024 Apr; 20(4):e1012030. PubMed ID: 38683837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A differential Hebbian framework for biologically-plausible motor control.
    Verduzco-Flores S; Dorrell W; De Schutter E
    Neural Netw; 2022 Jun; 150():237-258. PubMed ID: 35325677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Working Memory Through Selective Gating and Attentional Tagging.
    Kruijne W; Bohte SM; Roelfsema PR; Olivers CNL
    Neural Comput; 2021 Jan; 33(1):1-40. PubMed ID: 33080159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.
    Badre D; Frank MJ
    Cereb Cortex; 2012 Mar; 22(3):527-36. PubMed ID: 21693491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses.
    Yuan M; Wu X; Yan R; Tang H
    Neural Comput; 2019 Dec; 31(12):2368-2389. PubMed ID: 31614099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex.
    Tsuda B; Tye KM; Siegelmann HT; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29872-29882. PubMed ID: 33154155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classic Hebbian learning endows feed-forward networks with sufficient adaptability in challenging reinforcement learning tasks.
    Burns TF
    J Neurophysiol; 2021 Jun; 125(6):2034-2037. PubMed ID: 33909499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization.
    Masse NY; Grant GD; Freedman DJ
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):E10467-E10475. PubMed ID: 30315147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Reinforcement Learning and Its Neuroscientific Implications.
    Botvinick M; Wang JX; Dabney W; Miller KJ; Kurth-Nelson Z
    Neuron; 2020 Aug; 107(4):603-616. PubMed ID: 32663439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning.
    Averbeck BB
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2121331119. PubMed ID: 35622896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.
    Lindsay GW; Rigotti M; Warden MR; Miller EK; Fusi S
    J Neurosci; 2017 Nov; 37(45):11021-11036. PubMed ID: 28986463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One Step Back, Two Steps Forward: Interference and Learning in Recurrent Neural Networks.
    Beer C; Barak O
    Neural Comput; 2019 Oct; 31(10):1985-2003. PubMed ID: 31393826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation.
    Doll BB; Jacobs WJ; Sanfey AG; Frank MJ
    Brain Res; 2009 Nov; 1299():74-94. PubMed ID: 19595993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals.
    Flesch T; Nagy DG; Saxe A; Summerfield C
    PLoS Comput Biol; 2023 Jan; 19(1):e1010808. PubMed ID: 36656823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Attention for Sequence Modeling via Reinforcement Learning.
    Fei H; Zhang Y; Ren Y; Ji D
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3612-3621. PubMed ID: 33566767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier.
    Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.