BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 30177403)

  • 1. Methodological considerations in calculating heart rate variability based on wearable device heart rate samples.
    Chen HK; Hu YF; Lin SF
    Comput Biol Med; 2018 Nov; 102():396-401. PubMed ID: 30177403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Interbeat Interval and Heart Rate Variability Estimation Method From Various Morphological Features Using Wearable Sensors.
    Aygun A; Ghasemzadeh H; Jafari R
    IEEE J Biomed Health Inform; 2020 Aug; 24(8):2238-2250. PubMed ID: 31899444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a wearable device to compare subjective and objective fatigue in lung cancer patients and cancer-free controls.
    Chou TL; Shih CH; Chou PC; Lai JH; Huang TW
    Eur J Oncol Nurs; 2024 Jun; 70():102587. PubMed ID: 38652934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between Electrocardiographic and Earlobe Pulse Photoplethysmographic Detection for Evaluating Heart Rate Variability in Healthy Subjects in Short- and Long-Term Recordings.
    Vescio B; Salsone M; Gambardella A; Quattrone A
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29533990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Heart rate extraction algorithm based on adaptive heart rate search model].
    Meng R; Li Z; Yu H; Niu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):516-526. PubMed ID: 35788521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations.
    Hinde K; White G; Armstrong N
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camera-Based Seismocardiogram for Heart Rate Variability Monitoring.
    Liu L; Yu D; Lu H; Shan C; Wang W
    IEEE J Biomed Health Inform; 2024 May; 28(5):2794-2805. PubMed ID: 38412075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Detection of Target Engagement in Transcutaneous Cervical Vagal Nerve Stimulation for Traumatic Stress Triggers.
    Gurel NZ; Wittbrodt MT; Jung H; Ladd SL; Shah AJ; Vaccarino V; Bremner JD; Inan OT
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1917-1925. PubMed ID: 32175881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The redistribution of power: neurocardiac signaling, alcohol and gender.
    Bates ME; Buckman JF; Vaschillo EG; Fonoberov VA; Fonoberova M; Vaschillo B; Mun EY; Mezić A; Mezić I
    PLoS One; 2011; 6(12):e28281. PubMed ID: 22164260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis.
    Lee S; Moon J; Lee YS; Shin SC; Lee K
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of wearable multi-biosensor platform and resonance frequency training for stress management of the unemployed population.
    Wu W; Gil Y; Lee J
    Sensors (Basel); 2012 Sep; 12(10):13225-48. PubMed ID: 23201994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wearable respiratory biofeedback system based on generalized body sensor network.
    Liu GZ; Huang BY; Wang L
    Telemed J E Health; 2011 Jun; 17(5):348-57. PubMed ID: 21545293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical difference in the frequency domain to suppress disturbance for wearable electronics.
    Li H; Wang Z; Cao Y; Ma Y; Feng X
    Biomed Opt Express; 2020 Dec; 11(12):6920-6932. PubMed ID: 33408970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals.
    Bizzego A; Gabrieli G; Furlanello C; Esposito G
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COVID-19 surveillance based on consumer wearable devices.
    Zhang C; Sun A; Liao J; Zhang C; Yu K; Ma X; Wang G
    Digit Health; 2024; 10():20552076241247374. PubMed ID: 38665889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical methods for predicting e-cigarette use events based on beat-to-beat interval (BBI) data collected from wearable devices.
    Yang JJ; Piper ME; Indic P; Buu A
    Stat Med; 2024 May; ():. PubMed ID: 38816901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Digital Health Technologies for Monitoring in Cardiovascular Medicine.
    Spatz ES; Ginsburg GS; Rumsfeld JS; Turakhia MP
    N Engl J Med; 2024 Jan; 390(4):346-356. PubMed ID: 38265646
    [No Abstract]   [Full Text] [Related]  

  • 18. The normalized spectral and nonlinear indexes in heart rate variability analysis.
    Kurtoglu E
    Pediatr Int; 2024; 66(1):e15778. PubMed ID: 38863301
    [No Abstract]   [Full Text] [Related]  

  • 19. Application of the Lomb-Scargle Periodogram to InvestigateHeart Rate Variability during Haemodialysis.
    Stewart J; Stewart P; Walker T; Gullapudi L; Eldehni MT; Selby NM; Taal MW
    J Healthc Eng; 2020; 2020():8862074. PubMed ID: 33376586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of mental fatigue state with wearable ECG devices.
    Huang S; Li J; Zhang P; Zhang W
    Int J Med Inform; 2018 Nov; 119():39-46. PubMed ID: 30342684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.