BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30177443)

  • 1. Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane.
    Kabelka I; Vácha R
    Biophys J; 2018 Sep; 115(6):1045-1054. PubMed ID: 30177443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained simulation studies of peptide-induced pore formation.
    Illya G; Deserno M
    Biophys J; 2008 Nov; 95(9):4163-73. PubMed ID: 18641080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing properties of translocation-enhancing transmembrane proteins.
    Bartoš L; Drabinová M; Vácha R
    Biophys J; 2024 May; 123(10):1240-1252. PubMed ID: 38615194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of hydrophobic and hydrophilic interactions in sequence-dependent cell penetration of spontaneous membrane-translocating peptides revealed by bias-exchange metadynamics simulations.
    Cao Z; Liu L; Hu G; Bian Y; Li H; Wang J; Zhou Y
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183402. PubMed ID: 32569587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal conditions for opening of membrane pore by amphiphilic peptides.
    Kabelka I; Vácha R
    J Chem Phys; 2015 Dec; 143(24):243115. PubMed ID: 26723600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Distribution Fine-Tunes the Translocation of α-Helical Amphipathic Peptides across Membranes.
    Ablan FDO; Spaller BL; Abdo KI; Almeida PF
    Biophys J; 2016 Oct; 111(8):1738-1749. PubMed ID: 27760360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy.
    Ramírez PG; Del Pópolo MG; Vila JA; Szleifer I; Longo GS
    J Colloid Interface Sci; 2019 Sep; 552():701-711. PubMed ID: 31176053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of phospholipid bilayers with several classes of amphiphilic alpha-helical peptides: insights from coarse-grained molecular dynamics simulations.
    Gkeka P; Sarkisov L
    J Phys Chem B; 2010 Jan; 114(2):826-39. PubMed ID: 20028006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained molecular dynamics studies of the translocation mechanism of polyarginines across asymmetric membrane under tension.
    He X; Lin M; Sha B; Feng S; Shi X; Qu Z; Xu F
    Sci Rep; 2015 Aug; 5():12808. PubMed ID: 26235300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity.
    Fernández-Vidal M; Jayasinghe S; Ladokhin AS; White SH
    J Mol Biol; 2007 Jul; 370(3):459-70. PubMed ID: 17532340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
    Castillo N; Monticelli L; Barnoud J; Tieleman DP
    Chem Phys Lipids; 2013 Apr; 169():95-105. PubMed ID: 23415670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring peptide-membrane interactions with coarse-grained MD simulations.
    Hall BA; Chetwynd AP; Sansom MS
    Biophys J; 2011 Apr; 100(8):1940-8. PubMed ID: 21504730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of voltage-driven translocation of a signal sequence.
    Efremov RG; Volynsky PE; Nolde DE; van Dalen A; de Kruijff B; Arseniev AS
    FEBS Lett; 2002 Aug; 526(1-3):97-100. PubMed ID: 12208512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides.
    Ulmschneider MB; Ulmschneider JP
    Mol Membr Biol; 2008 Apr; 25(3):245-57. PubMed ID: 18428040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.