BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30177444)

  • 1. Effect of Cytoskeleton Elasticity on Amoeboid Swimming.
    Ranganathan M; Farutin A; Misbah C
    Biophys J; 2018 Oct; 115(7):1316-1329. PubMed ID: 30177444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of amoeboid swimming at low Reynolds number.
    Wang Q; Othmer HG
    J Math Biol; 2016 Jun; 72(7):1893-926. PubMed ID: 26362281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical exploration on buckling instability for directional control in flagellar propulsion.
    Huang W; Jawed MK
    Soft Matter; 2020 Jan; 16(3):604-613. PubMed ID: 31872849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Floppy swimming: viscous locomotion of actuated elastica.
    Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041916. PubMed ID: 17500930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-free swimming of a model helical flagellum in viscoelastic fluids.
    Liu B; Powers TR; Breuer KS
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19516-20. PubMed ID: 22106263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amoeboid swimming in a channel.
    Wu H; Farutin A; Hu WF; Thiébaud M; Rafaï S; Peyla P; Lai MC; Misbah C
    Soft Matter; 2016 Sep; 12(36):7470-84. PubMed ID: 27546154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional simulations of undulatory and amoeboid swimmers in viscoelastic fluids.
    Binagia JP; Guido CJ; Shaqfeh ESG
    Soft Matter; 2019 Jun; 15(24):4836-4855. PubMed ID: 31155624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swimming of spermatozoa in a linear viscoelastic fluid.
    Fulford GR; Katz DF; Powell RL
    Biorheology; 1998; 35(4-5):295-309. PubMed ID: 10474656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beating patterns of filaments in viscoelastic fluids.
    Fu HC; Wolgemuth CW; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041913. PubMed ID: 18999461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular microrheology of motile Amoeba proteus.
    Rogers SS; Waigh TA; Lu JR
    Biophys J; 2008 Apr; 94(8):3313-22. PubMed ID: 18192370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-amplitude swimmers can self-propel faster in viscoelastic fluids.
    Riley EE; Lauga E
    J Theor Biol; 2015 Oct; 382():345-55. PubMed ID: 26163369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fluid elasticity on the emergence of oscillations in an active elastic filament.
    Link KG; Guy RD; Thomases B; Arratia PE
    J R Soc Interface; 2024 May; 21(214):20240046. PubMed ID: 38774961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amoeboid motion in confined geometry.
    Wu H; Thiébaud M; Hu WF; Farutin A; Rafaï S; Lai MC; Peyla P; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):050701. PubMed ID: 26651631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amoeboid cells use protrusions for walking, gliding and swimming.
    Van Haastert PJ
    PLoS One; 2011; 6(11):e27532. PubMed ID: 22096590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational model of ameboid deformation and locomotion.
    Bottino DC; Fauci LJ
    Eur Biophys J; 1998; 27(5):532-9. PubMed ID: 9760734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamics of helical-shaped bacterial motility.
    Wada H; Netz RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021921. PubMed ID: 19792165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations.
    Farutin A; Rafaï S; Dysthe DK; Duperray A; Peyla P; Misbah C
    Phys Rev Lett; 2013 Nov; 111(22):228102. PubMed ID: 24329472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.