These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30177582)

  • 1. Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery.
    Horakova J; Mikes P; Lukas D; Saman A; Jencova V; Klapstova A; Svarcova T; Ackermann M; Novotny V; Kalab M; Lonsky V; Bartos M; Rampichova M; Litvinec A; Kubikova T; Tomasek P; Tonar Z
    Biomed Mater; 2018 Sep; 13(6):065009. PubMed ID: 30177582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration.
    Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q
    Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 6. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofunctionalized Electrospun PCL-PIBMD/SF Vascular Grafts with PEG and Cell-Adhesive Peptides for Endothelialization.
    Bai L; Zhao J; Li Q; Guo J; Ren X; Xia S; Zhang W; Feng Y
    Macromol Biosci; 2019 Feb; 19(2):e1800386. PubMed ID: 30485667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of abdominal wall with scaffolds of electrospun poly (l-lactide-co caprolactone) and porcine fibrinogen: An experimental study in the canine.
    Li S; Su L; Li X; Yang L; Yang M; Zong H; Zong Q; Tang J; He H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110644. PubMed ID: 32204076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft.
    Tara S; Kurobe H; Maxfield MW; Rocco KA; Yi T; Naito Y; Breuer CK; Shinoka T
    J Vasc Surg; 2015 Sep; 62(3):734-43. PubMed ID: 24745941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ blood vessel regeneration using neuropeptide substance P-conjugated small-diameter vascular grafts.
    Shafiq M; Wang L; Zhi D; Zhang Q; Wang K; Wang L; Kim DH; Kong D; Kim SH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1669-1683. PubMed ID: 30315717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model.
    Matsuzaki Y; Iwaki R; Reinhardt JW; Chang YC; Miyamoto S; Kelly J; Zbinden J; Blum K; Mirhaidari G; Ulziibayar A; Shoji T; Breuer CK; Shinoka T
    Acta Biomater; 2020 Oct; 115():176-184. PubMed ID: 32822820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model.
    Jin X; Geng X; Jia L; Xu Z; Ye L; Gu Y; Zhang AY; Feng ZG
    Macromol Biosci; 2019 Aug; 19(8):e1900114. PubMed ID: 31222914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts.
    Li P; Jin D; Dou J; Wang L; Wang Y; Jin X; Han X; Kang IK; Yuan J; Shen J; Yin M
    Int J Biol Macromol; 2021 Oct; 189():516-527. PubMed ID: 34450147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Layered PCL Grafts Promoted Vascular Regeneration in a Rabbit Carotid Artery Model.
    Wang K; Zheng W; Pan Y; Ma S; Guan Y; Liu R; Zhu M; Zhou X; Zhang J; Zhao Q; Zhu Y; Wang L; Kong D
    Macromol Biosci; 2016 Apr; 16(4):608-18. PubMed ID: 26756321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A; Colombus S; Krishnan VK; Krishnan LK
    J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional electrospun poly(lactide-co-ɛ-caprolactone) for small-diameter vascular grafts.
    Mun CH; Jung Y; Kim SH; Lee SH; Kim HC; Kwon IK; Kim SH
    Tissue Eng Part A; 2012 Aug; 18(15-16):1608-16. PubMed ID: 22462723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.