These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30177699)

  • 1. Super-wide-field two-photon imaging with a micro-optical device moving in post-objective space.
    Terada SI; Kobayashi K; Ohkura M; Nakai J; Matsuzaki M
    Nat Commun; 2018 Sep; 9(1):3550. PubMed ID: 30177699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats.
    Wang Y; Kurata K
    Brain Res; 1998 Jan; 781(1-2):137-47. PubMed ID: 9507093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale all-optical dissection of motor cortex connectivity shows a segregated organization of mouse forelimb representations.
    Resta F; Montagni E; de Vito G; Scaglione A; Allegra Mascaro AL; Pavone FS
    Cell Rep; 2022 Nov; 41(6):111627. PubMed ID: 36351410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.
    Kunori N; Takashima I
    Eur J Neurosci; 2016 Dec; 44(11):2925-2934. PubMed ID: 27717064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ipsilateral cortical inputs to the rostral and caudal motor areas in rats.
    Mohammed H; Jain N
    J Comp Neurol; 2016 Oct; 524(15):3104-23. PubMed ID: 27037503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin suturing and cortical surface viral infusion improves imaging of neuronal ensemble activity with head-mounted miniature microscopes.
    Li X; Cao VY; Zhang W; Mastwal SS; Liu Q; Otte S; Wang KH
    J Neurosci Methods; 2017 Nov; 291():238-248. PubMed ID: 28830724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force Decoding of Caudal Forelimb Area and Rostral Forelimb Area in Chronic Stroke Rats.
    Gao H; Sun M; Li M; Wang C; Yu C; Wang Y; Xu K
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3078-3086. PubMed ID: 33661731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.
    Okabe N; Shiromoto T; Himi N; Lu F; Maruyama-Nakamura E; Narita K; Iwachidou N; Yagita Y; Miyamoto O
    Neuroscience; 2016 Dec; 339():338-362. PubMed ID: 27725217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between rostral and caudal cortical motor areas in the rat.
    Deffeyes JE; Touvykine B; Quessy S; Dancause N
    J Neurophysiol; 2015 Jun; 113(10):3893-904. PubMed ID: 25855697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.
    Vallone F; Lai S; Spalletti C; Panarese A; Alia C; Micera S; Caleo M; Di Garbo A
    PLoS One; 2016; 11(1):e0146858. PubMed ID: 26752066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds.
    Clough M; Chen IA; Park SW; Ahrens AM; Stirman JN; Smith SL; Chen JL
    Nat Commun; 2021 Nov; 12(1):6638. PubMed ID: 34789730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of forelimb motor cortex areas in goal directed action in mice.
    Morandell K; Huber D
    Sci Rep; 2017 Nov; 7(1):15759. PubMed ID: 29150620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light sources and cameras for standard in vitro membrane potential and high-speed ion imaging.
    Davies R; Graham J; Canepari M
    J Microsc; 2013 Jul; 251(1):5-13. PubMed ID: 23692638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.
    Ma Y; Shaik MA; Kim SH; Kozberg MG; Thibodeaux DN; Zhao HT; Yu H; Hillman EM
    Philos Trans R Soc Lond B Biol Sci; 2016 Oct; 371(1705):. PubMed ID: 27574312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential contributions of rostral and caudal frontal forelimb areas to compensatory process after neonatal hemidecortication in rats.
    Umeda T; Isa T
    Eur J Neurosci; 2011 Nov; 34(9):1453-60. PubMed ID: 22034976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex.
    Touvykine B; Mansoori BK; Jean-Charles L; Deffeyes J; Quessy S; Dancause N
    Neurorehabil Neural Repair; 2016 Mar; 30(3):280-92. PubMed ID: 25967757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions.
    Kimura R; Saiki A; Fujiwara-Tsukamoto Y; Sakai Y; Isomura Y
    J Physiol; 2017 Jan; 595(1):385-413. PubMed ID: 27488936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy.
    Hayashi Y; Yawata S; Funabiki K; Hikida T
    PLoS One; 2017; 12(7):e0180452. PubMed ID: 28700611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.
    Mohammed H; Jain N
    J Comp Neurol; 2014 Feb; 522(3):528-45. PubMed ID: 23853077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry.
    Yu CH; Stirman JN; Yu Y; Hira R; Smith SL
    Nat Commun; 2021 Nov; 12(1):6639. PubMed ID: 34789723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.