BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 30177741)

  • 1. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1.
    Beckert B; Turk M; Czech A; Berninghausen O; Beckmann R; Ignatova Z; Plitzko JM; Wilson DN
    Nat Microbiol; 2018 Oct; 3(10):1115-1121. PubMed ID: 30177741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis.
    Polikanov YS; Blaha GM; Steitz TA
    Science; 2012 May; 336(6083):915-8. PubMed ID: 22605777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the
    Beckert B; Abdelshahid M; Schäfer H; Steinchen W; Arenz S; Berninghausen O; Beckmann R; Bange G; Turgay K; Wilson DN
    EMBO J; 2017 Jul; 36(14):2061-2072. PubMed ID: 28468753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli.
    Yoshida H; Maki Y; Kato H; Fujisawa H; Izutsu K; Wada C; Wada A
    J Biochem; 2002 Dec; 132(6):983-9. PubMed ID: 12473202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli.
    Ueta M; Ohniwa RL; Yoshida H; Maki Y; Wada C; Wada A
    J Biochem; 2008 Mar; 143(3):425-33. PubMed ID: 18174192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus.
    Matzov D; Aibara S; Basu A; Zimmerman E; Bashan A; Yap MF; Amunts A; Yonath AE
    Nat Commun; 2017 Sep; 8(1):723. PubMed ID: 28959035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of two distinct types of 100S ribosome in bacteria.
    Ueta M; Wada C; Daifuku T; Sako Y; Bessho Y; Kitamura A; Ohniwa RL; Morikawa K; Yoshida H; Kato T; Miyata T; Namba K; Wada A
    Genes Cells; 2013 Jul; 18(7):554-74. PubMed ID: 23663662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H; Yamamoto H; Uchiumi T; Wada A
    Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activities of Escherichia coli ribosomes in IF3 and RMF change to prepare 100S ribosome formation on entering the stationary growth phase.
    Yoshida H; Ueta M; Maki Y; Sakai A; Wada A
    Genes Cells; 2009 Feb; 14(2):271-80. PubMed ID: 19170772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy.
    Franken LE; Oostergetel GT; Pijning T; Puri P; Arkhipova V; Boekema EJ; Poolman B; Guskov A
    Nat Commun; 2017 Sep; 8(1):722. PubMed ID: 28959045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 100S ribosome: ribosomal hibernation induced by stress.
    Yoshida H; Wada A
    Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of Mycobacterium smegmatis 70S ribosomes in complex with HPF, tmRNA, and P-tRNA.
    Mishra S; Ahmed T; Tyagi A; Shi J; Bhushan S
    Sci Rep; 2018 Sep; 8(1):13587. PubMed ID: 30206241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping the ribosome to control gene expression.
    Boehringer D; Ban N
    Cell; 2007 Sep; 130(6):983-5. PubMed ID: 17889642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation.
    Ferdosh S; Banerjee S; Pathak BK; Sengupta J; Barat C
    FEBS J; 2021 Feb; 288(4):1305-1324. PubMed ID: 32649051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism.
    Flygaard RK; Boegholm N; Yusupov M; Jenner LB
    Nat Commun; 2018 Oct; 9(1):4179. PubMed ID: 30301898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli.
    Ueta M; Yoshida H; Wada C; Baba T; Mori H; Wada A
    Genes Cells; 2005 Dec; 10(12):1103-12. PubMed ID: 16324148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.
    Kline BC; McKay SL; Tang WW; Portnoy DA
    J Bacteriol; 2015 Feb; 197(3):581-91. PubMed ID: 25422304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress response as implemented by hibernating ribosomes: a structural overview.
    Matzov D; Bashan A; Yap MF; Yonath A
    FEBS J; 2019 Sep; 286(18):3558-3565. PubMed ID: 31230411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth phase coupled modulation of Escherichia coli ribosomes.
    Wada A
    Genes Cells; 1998 Apr; 3(4):203-8. PubMed ID: 9663655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.