These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 30177833)
1. Desuppression of TGF-β signaling via nuclear c-Abl-mediated phosphorylation of TIF1γ/TRIM33 at Tyr-524, -610, and -1048. Yuki R; Tatewaki T; Yamaguchi N; Aoyama K; Honda T; Kubota S; Morii M; Manabe I; Kuga T; Tomonaga T; Yamaguchi N Oncogene; 2019 Jan; 38(5):637-655. PubMed ID: 30177833 [TBL] [Abstract][Full Text] [Related]
2. [Aberrant Activation Mechanism of TGF-β Signaling in Epithelial-mesenchymal Transition]. Yuki R Yakugaku Zasshi; 2021; 141(11):1229-1234. PubMed ID: 34719542 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of TGF-β-induced Smad3 activity by c-Abl-mediated tyrosine phosphorylation of its coactivator SKI-interacting protein (SKIP). Kuki K; Yamaguchi N; Iwasawa S; Takakura Y; Aoyama K; Yuki R; Nakayama Y; Kuga T; Hashimoto Y; Tomonaga T; Yamaguchi N Biochem Biophys Res Commun; 2017 Aug; 490(3):1045-1051. PubMed ID: 28666867 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor beta activation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures. Wilkes MC; Leof EB J Biol Chem; 2006 Sep; 281(38):27846-54. PubMed ID: 16867995 [TBL] [Abstract][Full Text] [Related]
5. The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling. Liang J; Zhou Y; Zhang N; Wang D; Cheng X; Li K; Huang R; Lu Y; Wang H; Han D; Wu W; Han M; Miao S; Wang L; Zhao H; Song W J Biol Chem; 2021; 296():100512. PubMed ID: 33676893 [TBL] [Abstract][Full Text] [Related]
6. Dynamic regulation of Tgf-B signaling by Tif1γ: a computational approach. Andrieux G; Fattet L; Le Borgne M; Rimokh R; Théret N PLoS One; 2012; 7(3):e33761. PubMed ID: 22461896 [TBL] [Abstract][Full Text] [Related]
7. WDR74 functions as a novel coactivator in TGF-β signaling. Liu J; Zhao M; Yuan B; Gu S; Zheng M; Zou J; Jin J; Liu T; Feng XH J Genet Genomics; 2018 Dec; 45(12):639-650. PubMed ID: 30594465 [TBL] [Abstract][Full Text] [Related]
8. Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Ding ZY; Jin GN; Wang W; Chen WX; Wu YH; Ai X; Chen L; Zhang WG; Liang HF; Laurence A; Zhang MZ; Datta PK; Zhang B; Chen XP Hepatology; 2014 Nov; 60(5):1620-36. PubMed ID: 24954480 [TBL] [Abstract][Full Text] [Related]
9. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. Brown KA; Pietenpol JA; Moses HL J Cell Biochem; 2007 May; 101(1):9-33. PubMed ID: 17340614 [TBL] [Abstract][Full Text] [Related]
10. Repression of TIF1γ by SOX2 promotes TGF-β-induced epithelial-mesenchymal transition in non-small-cell lung cancer. Wang L; Yang H; Lei Z; Zhao J; Chen Y; Chen P; Li C; Zeng Y; Liu Z; Liu X; Zhang HT Oncogene; 2016 Feb; 35(7):867-77. PubMed ID: 25961934 [TBL] [Abstract][Full Text] [Related]
11. Noncanonical TGF-beta pathways, mTORC1 and Abl, in renal interstitial fibrogenesis. Wang S; Wilkes MC; Leof EB; Hirschberg R Am J Physiol Renal Physiol; 2010 Jan; 298(1):F142-9. PubMed ID: 19846571 [TBL] [Abstract][Full Text] [Related]
12. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Matsuzaki K; Kitano C; Murata M; Sekimoto G; Yoshida K; Uemura Y; Seki T; Taketani S; Fujisawa J; Okazaki K Cancer Res; 2009 Jul; 69(13):5321-30. PubMed ID: 19531654 [TBL] [Abstract][Full Text] [Related]
13. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. Wrighton KH; Willis D; Long J; Liu F; Lin X; Feng XH J Biol Chem; 2006 Dec; 281(50):38365-75. PubMed ID: 17035229 [TBL] [Abstract][Full Text] [Related]
14. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. Felici A; Wurthner JU; Parks WT; Giam LR; Reiss M; Karpova TS; McNally JG; Roberts AB EMBO J; 2003 Sep; 22(17):4465-77. PubMed ID: 12941698 [TBL] [Abstract][Full Text] [Related]
16. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. He W; Dorn DC; Erdjument-Bromage H; Tempst P; Moore MA; Massagué J Cell; 2006 Jun; 125(5):929-41. PubMed ID: 16751102 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor beta signaling via Ras in mesenchymal cells requires p21-activated kinase 2 for extracellular signal-regulated kinase-dependent transcriptional responses. Suzuki K; Wilkes MC; Garamszegi N; Edens M; Leof EB Cancer Res; 2007 Apr; 67(8):3673-82. PubMed ID: 17440079 [TBL] [Abstract][Full Text] [Related]
18. EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Kim J; Kong J; Chang H; Kim H; Kim A Oncotarget; 2016 Dec; 7(51):85021-85032. PubMed ID: 27829223 [TBL] [Abstract][Full Text] [Related]
19. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors. Miyazono KI; Moriwaki S; Ito T; Kurisaki A; Asashima M; Tanokura M Sci Signal; 2018 Mar; 11(523):. PubMed ID: 29588413 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of KRAB-associated protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by nuclear tyrosine kinases inhibits the association of KAP1 and heterochromatin protein 1α (HP1α) with heterochromatin. Kubota S; Fukumoto Y; Aoyama K; Ishibashi K; Yuki R; Morinaga T; Honda T; Yamaguchi N; Kuga T; Tomonaga T; Yamaguchi N J Biol Chem; 2013 Jun; 288(24):17871-83. PubMed ID: 23645696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]