These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30177984)

  • 1. 2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability.
    Beladi-Mousavi SM; Pumera M
    Chem Soc Rev; 2018 Sep; 47(18):6964-6989. PubMed ID: 30177984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries.
    Guo S; Feng Y; Wang L; Jiang Y; Yu Y; Hu X
    Small; 2021 May; 17(19):e2005248. PubMed ID: 33734598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure.
    Wang R; Wang L; Liu R; Li X; Wu Y; Ran F
    ACS Nano; 2024 Jan; 18(4):2611-2648. PubMed ID: 38221745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications.
    Xu Y; Shi Z; Shi X; Zhang K; Zhang H
    Nanoscale; 2019 Aug; 11(31):14491-14527. PubMed ID: 31361285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.
    Xie X; Wang S; Kretschmer K; Wang G
    J Colloid Interface Sci; 2017 Aug; 499():17-32. PubMed ID: 28363101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries.
    Zhu J; Xiao G; Zuo X
    Nanomicro Lett; 2020 Jun; 12(1):120. PubMed ID: 34138144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth.
    Sturala J; Sofer Z; Pumera M
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7551-7557. PubMed ID: 30994978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Self-Supported Ge Anode for Advanced Lithium-Ion Batteries.
    Fang XX; Jiang C; Yue C; Hu F
    Chemistry; 2024 May; 30(28):e202400063. PubMed ID: 38436136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current progress in black phosphorus materials and their applications in electrochemical energy storage.
    Qiu M; Sun ZT; Sang DK; Han XG; Zhang H; Niu CM
    Nanoscale; 2017 Sep; 9(36):13384-13403. PubMed ID: 28868563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode.
    McCulloch WD; Ren X; Yu M; Huang Z; Wu Y
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26158-66. PubMed ID: 26550678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black Phosphorus Degradation during Intercalation and Alloying in Batteries.
    Said S; Zhang Z; Shutt RRC; Lancaster HJ; Brett DJL; Howard CA; Miller TS
    ACS Nano; 2023 Apr; 17(7):6220-6233. PubMed ID: 36972510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene hybridization for energy storage applications.
    Li X; Zhi L
    Chem Soc Rev; 2018 May; 47(9):3189-3216. PubMed ID: 29512678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications.
    Zhou W; Sit PH
    ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na
    Ko JS; Doan-Nguyen VV; Kim HS; Muller GA; Serino AC; Weiss PS; Dunn BS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1416-1425. PubMed ID: 27996248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Black Phosphorus: Preparation, Passivation and Lithium-Ion Battery Applications.
    Li H; Li C; Zhao H; Tao B; Wang G
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.