These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 30178203)

  • 1. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli.
    Wu J; Zhou P; Zhang X; Dong M
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1083-1095. PubMed ID: 28324236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial Optimization of Resveratrol Production in Engineered E. coli.
    Zhao Y; Wu BH; Liu ZN; Qiao J; Zhao GR
    J Agric Food Chem; 2018 Dec; 66(51):13444-13453. PubMed ID: 30488696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives.
    Shrestha A; Pandey RP; Sohng JK
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):2959-2972. PubMed ID: 30798357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient
    Chen J; Wang W; Wang L; Wang H; Hu M; Zhou J; Du G; Zeng W
    J Agric Food Chem; 2024 Jan; 72(1):566-576. PubMed ID: 38154088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine.
    Wu J; Liu P; Fan Y; Bao H; Du G; Zhou J; Chen J
    J Biotechnol; 2013 Sep; 167(4):404-11. PubMed ID: 23916948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis.
    Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli.
    Cheng Z; Jiang J; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological production of plant-specific hydroxylated phenylpropanoids.
    Lin Y; Yan Y
    Biotechnol Bioeng; 2014 Sep; 111(9):1895-9. PubMed ID: 24752627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of Gram-negative and Gram-positive bacteria capable of producing piceatannol from resveratrol.
    Furuya T; Imaki N; Shigei K; Sai M; Kino K
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5811-5820. PubMed ID: 31093702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.
    Wu J; Zhang X; Zhu Y; Tan Q; He J; Dong M
    Sci Rep; 2017 May; 7(1):1459. PubMed ID: 28469159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Synthesis of Resveratrol from Sucrose by Metabolically Engineered
    Ibrahim GG; Perera M; Abdulmalek SA; Yan J; Yan Y
    Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient monooxygenase-catalyzed piceatannol production: Application of cyclodextrins for reducing product inhibition.
    Furuya T; Sai M; Kino K
    J Biosci Bioeng; 2018 Oct; 126(4):478-481. PubMed ID: 29764766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering endogenous l-proline biosynthetic pathway to boost trans-4-hydroxy-l-proline production in Escherichia coli.
    Jiang L; Pang J; Yang L; Li W; Duan L; Zhang G; Luo Y
    J Biotechnol; 2021 Mar; 329():104-117. PubMed ID: 33539894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli modular coculture system for resveratrol glucosides production.
    Thuan NH; Trung NT; Cuong NX; Van Cuong D; Van Quyen D; Malla S
    World J Microbiol Biotechnol; 2018 May; 34(6):75. PubMed ID: 29796765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering.
    Zha W; Rubin-Pitel SB; Shao Z; Zhao H
    Metab Eng; 2009 May; 11(3):192-8. PubMed ID: 19558964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria.
    Yang D; Kim WJ; Yoo SM; Choi JH; Ha SH; Lee MH; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9835-9844. PubMed ID: 30232266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.