These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 30178307)
1. Insights into archaeal chaperone machinery: a network-based approach. Rani S; Sharma A; Goel M Cell Stress Chaperones; 2018 Nov; 23(6):1257-1274. PubMed ID: 30178307 [TBL] [Abstract][Full Text] [Related]
2. The archaeal molecular chaperone machine: peculiarities and paradoxes. Macario AJ; Conway de Macario E Genetics; 1999 Aug; 152(4):1277-83. PubMed ID: 10430558 [TBL] [Abstract][Full Text] [Related]
3. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. Zmijewski MA; Macario AJ; Lipińska B J Mol Biol; 2004 Feb; 336(2):539-49. PubMed ID: 14757064 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria. Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B Acta Biochim Pol; 2007; 54(2):245-52. PubMed ID: 17565388 [TBL] [Abstract][Full Text] [Related]
5. Chaperones and protein folding in the archaea. Large AT; Goldberg MD; Lund PA Biochem Soc Trans; 2009 Feb; 37(Pt 1):46-51. PubMed ID: 19143600 [TBL] [Abstract][Full Text] [Related]
6. CrAgDb--a database of annotated chaperone repertoire in archaeal genomes. Rani S; Srivastava A; Kumar M; Goel M FEMS Microbiol Lett; 2016 Mar; 363(6):. PubMed ID: 26862144 [TBL] [Abstract][Full Text] [Related]
7. DnaK functions as a central hub in the E. coli chaperone network. Calloni G; Chen T; Schermann SM; Chang HC; Genevaux P; Agostini F; Tartaglia GG; Hayer-Hartl M; Hartl FU Cell Rep; 2012 Mar; 1(3):251-64. PubMed ID: 22832197 [TBL] [Abstract][Full Text] [Related]
8. Navigating the structure-function-evolutionary relationship of CsaA chaperone in archaea. Sharma A; Rani S; Goel M Crit Rev Microbiol; 2018 May; 44(3):274-289. PubMed ID: 28920507 [TBL] [Abstract][Full Text] [Related]
9. Insights into the Substrate Specificity of Archaeal Entner-Doudoroff Aldolases: The Structures of Picrophilus torridus 2-Keto-3-deoxygluconate Aldolase and Sulfolobus solfataricus 2-Keto-3-deoxy-6-phosphogluconate Aldolase in Complex with 2-Keto-3-deoxy-6-phosphogluconate. Zaitsev V; Johnsen U; Reher M; Ortjohann M; Taylor GL; Danson MJ; Schönheit P; Crennell SJ Biochemistry; 2018 Jul; 57(26):3797-3806. PubMed ID: 29812914 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the replication initiator Orc1/Cdc6 from the Archaeon Picrophilus torridus. Arora J; Goswami K; Saha S J Bacteriol; 2014 Jan; 196(2):276-86. PubMed ID: 24187082 [TBL] [Abstract][Full Text] [Related]
11. The prefoldin of the crenarchaeon Sulfolobus solfataricus. D'Amaro A; Valenti A; Napoli A; Rossi M; Ciaramella M Protein Pept Lett; 2008; 15(10):1055-62. PubMed ID: 19075815 [TBL] [Abstract][Full Text] [Related]
12. Reversion of protein aggregation mediated by Sso7d in cell extracts of Sulfolobus solfataricus. Guagliardi A; Mancusi L; Rossi M Biochem J; 2004 Jul; 381(Pt 1):249-55. PubMed ID: 15025558 [TBL] [Abstract][Full Text] [Related]
13. Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. Macario AJ; Brocchieri L; Shenoy AR; Conway de Macario E J Mol Evol; 2006 Jul; 63(1):74-86. PubMed ID: 16788741 [TBL] [Abstract][Full Text] [Related]
14. Identification of Binding Partners of CsaA - An Archaeal Chaperonic Protein of Picrophilus torridus. Singhal N; Sharma A; Aswal M; Singh N; Kumar M; Goel M Protein Pept Lett; 2021; 28(6):675-679. PubMed ID: 33243110 [TBL] [Abstract][Full Text] [Related]
15. Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Macario AJ; Malz M; Conway de Macario E Front Biosci; 2004 May; 9():1318-32. PubMed ID: 14977547 [TBL] [Abstract][Full Text] [Related]
16. Transient interactions of a slow-folding protein with the Hsp70 chaperone machinery. Sekhar A; Santiago M; Lam HN; Lee JH; Cavagnero S Protein Sci; 2012 Jul; 21(7):1042-55. PubMed ID: 22549943 [TBL] [Abstract][Full Text] [Related]
17. Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. Buchberger A; Schröder H; Hesterkamp T; Schönfeld HJ; Bukau B J Mol Biol; 1996 Aug; 261(3):328-33. PubMed ID: 8780775 [TBL] [Abstract][Full Text] [Related]
18. A biosensor of protein foldedness identifies increased "holdase" activity of chaperones in the nucleus following increased cytosolic protein aggregation. Raeburn CB; Ormsby AR; Cox D; Gerak CA; Makhoul C; Moily NS; Ebbinghaus S; Dickson A; McColl G; Hatters DM J Biol Chem; 2022 Aug; 298(8):102158. PubMed ID: 35724963 [TBL] [Abstract][Full Text] [Related]
19. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. Genest O; Wickner S; Doyle SM J Biol Chem; 2019 Feb; 294(6):2109-2120. PubMed ID: 30401745 [TBL] [Abstract][Full Text] [Related]
20. HtpG Is a Metal-Dependent Chaperone Which Assists the DnaK/DnaJ/GrpE Chaperone System of Mycobacterium tuberculosis via Direct Association with DnaJ2. Mangla N; Singh R; Agarwal N Microbiol Spectr; 2023 Jun; 11(3):e0031223. PubMed ID: 37022172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]