BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30178338)

  • 1. Broadband NIRS Cerebral Cytochrome-C-Oxidase Response to Anoxia Before and After Hypoxic-Ischaemic Injury in Piglets.
    Bale G; Rajaram A; Kewin M; Morrison L; Bainbridge A; Diop M; St Lawrence K; Tachtsidis I
    Adv Exp Med Biol; 2018; 1072():151-156. PubMed ID: 30178338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelationship Between Broadband NIRS Measurements of Cerebral Cytochrome C Oxidase and Systemic Changes Indicates Injury Severity in Neonatal Encephalopathy.
    Bale G; Mitra S; de Roever I; Chan M; Caicedo-Dorado A; Meek J; Robertson N; Tachtsidis I
    Adv Exp Med Biol; 2016; 923():181-186. PubMed ID: 27526141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox state of near infrared spectroscopy-measured cytochrome aa(3) correlates with delayed cerebral energy failure following perinatal hypoxia-ischaemia in the newborn pig.
    Peeters-Scholte C; van den Tweel E; Groenendaal F; van Bel F
    Exp Brain Res; 2004 May; 156(1):20-6. PubMed ID: 14689136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy.
    Bainbridge A; Tachtsidis I; Faulkner SD; Price D; Zhu T; Baer E; Broad KD; Thomas DL; Cady EB; Robertson NJ; Golay X
    Neuroimage; 2014 Nov; 102 Pt 1():173-83. PubMed ID: 23959202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship Between Cerebral Oxygenation and Metabolism During Rewarming in Newborn Infants After Therapeutic Hypothermia Following Hypoxic-Ischemic Brain Injury.
    Mitra S; Bale G; Meek J; Uria-Avellanal C; Robertson NJ; Tachtsidis I
    Adv Exp Med Biol; 2016; 923():245-251. PubMed ID: 27526150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury.
    Mitra S; Bale G; Highton D; Gunny R; Uria-Avellanal C; Bainbridge A; Sokolska M; Price D; Huertas-Ceballos A; Kendall GS; Meek J; Tachtsidis I; Robertson NJ
    J Cereb Blood Flow Metab; 2019 Jan; 39(1):118-130. PubMed ID: 28949271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling blood flow and metabolism in the piglet brain during hypoxia-ischaemia: simulating brain energetics.
    Moroz T; Hapuarachchi T; Bainbridge A; Price D; Cady E; Baer E; Broad K; Ezzati M; Thomas D; Golay X; Robertson NJ; Cooper CE; Tachtsidis I
    Adv Exp Med Biol; 2013; 789():339-344. PubMed ID: 23852513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets.
    Tichauer KM; Brown DW; Hadway J; Lee TY; St Lawrence K
    J Appl Physiol (1985); 2006 Mar; 100(3):850-7. PubMed ID: 16293704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system.
    Kaynezhad P; Mitra S; Bale G; Bauer C; Lingam I; Meehan C; Avdic-Belltheus A; Martinello KA; Bainbridge A; Robertson NJ; Tachtsidis I
    Neurophotonics; 2019 Oct; 6(4):045009. PubMed ID: 31737744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating NIRS and MRS measurements during cerebral hypoxia-ischaemia in piglets using a computational model.
    Hapuarachchi T; Moroz T; Bainbridge A; Faulkner S; Price D; Broad KD; Thomas D; Cady E; Golay X; Robertson N; Tachtsidis I
    Adv Exp Med Biol; 2014; 812():187-194. PubMed ID: 24729232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in cerebral oxygen consumption and high-energy phosphates during early recovery in hypoxic-ischemic piglets: a combined near-infrared and magnetic resonance spectroscopy study.
    Winter JD; Tichauer KM; Gelman N; Thompson RT; Lee TY; St Lawrence K
    Pediatr Res; 2009 Feb; 65(2):181-7. PubMed ID: 18852691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Measurements of Brain Tissue Metabolism and Perfusion in a Neonatal Model of Hypoxic-Ischaemic Injury.
    Bale G; Rajaram A; Kewin M; Morrison L; Bainbridge A; Liu L; Anazodo U; Diop M; Lawrence KS; Tachtsidis I
    Adv Exp Med Biol; 2021; 1269():203-208. PubMed ID: 33966218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin.
    Kolyva C; Ghosh A; Tachtsidis I; Highton D; Cooper CE; Smith M; Elwell CE
    Neuroimage; 2014 Jan; 85 Pt 1(Pt 1):234-44. PubMed ID: 23707584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence on NIRS source-detector spacing of cytochrome c oxidase response to hypoxia and hypercapnia in the adult brain.
    Kolyva C; Ghosh A; Tachtsidis I; Highton D; Smith M; Elwell CE
    Adv Exp Med Biol; 2013; 789():353-359. PubMed ID: 23852515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional NIRS Measurement of Cytochrome-C-Oxidase Demonstrates a More Brain-Specific Marker of Frontal Lobe Activation Compared to the Haemoglobins.
    de Roever I; Bale G; Cooper RJ; Tachtsidis I
    Adv Exp Med Biol; 2017; 977():141-147. PubMed ID: 28685438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The utility of amplitude-integrated EEG and NIRS measurements as indices of hypoxic ischaemia in the newborn pig.
    Zhang D; Hou X; Liu Y; Zhou C; Luo Y; Ding H
    Clin Neurophysiol; 2012 Aug; 123(8):1668-75. PubMed ID: 22277760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in Cytochrome-C-Oxidase Account for Changes in Attenuation of Near-Infrared Light in the Healthy Infant Brain.
    Siddiqui MF; Lloyd-Fox S; Kaynezhad P; Tachtsidis I; Johnson MH; Elwell CE
    Adv Exp Med Biol; 2018; 1072():7-12. PubMed ID: 30178316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Distribution of Changes in Oxidised Cytochrome C Oxidase During Visual Stimulation Using Broadband Near Infrared Spectroscopy Imaging.
    Phan P; Highton D; Brigadoi S; Tachtsidis I; Smith M; Elwell CE
    Adv Exp Med Biol; 2016; 923():195-201. PubMed ID: 27526143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Measurement of Cerebral Mitochondrial Metabolism Using Broadband Near Infrared Spectroscopy Following Neonatal Stroke.
    Mitra S; Bale G; Meek J; Mathieson S; Uria C; Kendall G; Robertson NJ; Tachtsidis I
    Adv Exp Med Biol; 2016; 876():493-500. PubMed ID: 26782250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modelling of the piglet brain to simulate near-infrared spectroscopy and magnetic resonance spectroscopy data collected during oxygen deprivation.
    Moroz T; Banaji M; Robertson NJ; Cooper CE; Tachtsidis I
    J R Soc Interface; 2012 Jul; 9(72):1499-509. PubMed ID: 22279158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.