These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
699 related articles for article (PubMed ID: 30178387)
1. Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose. Xu WF; Ren HS; Ou T; Lei T; Wei JH; Huang CS; Li T; Strobel G; Zhou ZY; Xie J Microb Ecol; 2019 Apr; 77(3):651-663. PubMed ID: 30178387 [TBL] [Abstract][Full Text] [Related]
2. Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Xu W; Wang F; Zhang M; Ou T; Wang R; Strobel G; Xiang Z; Zhou Z; Xie J Microbiol Res; 2019 Dec; 229():126328. PubMed ID: 31521946 [TBL] [Abstract][Full Text] [Related]
3. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. Hazarika DJ; Goswami G; Gautom T; Parveen A; Das P; Barooah M; Boro RC BMC Microbiol; 2019 Apr; 19(1):71. PubMed ID: 30940070 [TBL] [Abstract][Full Text] [Related]
4. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Guo S; Li X; He P; Ho H; Wu Y; He Y J Ind Microbiol Biotechnol; 2015 Jun; 42(6):925-37. PubMed ID: 25860123 [TBL] [Abstract][Full Text] [Related]
5. Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Zaid DS; Cai S; Hu C; Li Z; Li Y Microbiol Spectr; 2022 Feb; 10(1):e0216921. PubMed ID: 35107331 [TBL] [Abstract][Full Text] [Related]
6. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Kushwaha P; Kashyap PL; Srivastava AK; Tiwari RK Braz J Microbiol; 2020 Mar; 51(1):229-241. PubMed ID: 31642002 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Guardado-Valdivia L; Tovar-Pérez E; Chacón-López A; López-García U; Gutiérrez-Martínez P; Stoll A; Aguilera S Microbiol Res; 2018 May; 210():26-32. PubMed ID: 29625655 [TBL] [Abstract][Full Text] [Related]
8. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Ribeiro IDA; Bach E; da Silva Moreira F; Müller AR; Rangel CP; Wilhelm CM; Barth AL; Passaglia LMP Microbiol Res; 2021 Jul; 248():126754. PubMed ID: 33848783 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Chen L; Shi H; Heng J; Wang D; Bian K Microbiol Res; 2019 Jan; 218():41-48. PubMed ID: 30454657 [TBL] [Abstract][Full Text] [Related]
10. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. Ji X; Lu G; Gai Y; Zheng C; Mu Z FEMS Microbiol Ecol; 2008 Sep; 65(3):565-73. PubMed ID: 18631174 [TBL] [Abstract][Full Text] [Related]
11. Genome analysis uncovers the prolific antagonistic and plant growth-promoting potential of endophyte Bacillus velezensis K1. Nanjani S; Soni R; Paul D; Keharia H Gene; 2022 Aug; 836():146671. PubMed ID: 35714801 [TBL] [Abstract][Full Text] [Related]
12. Isolation of Li Q; Liao S; Wei J; Xing D; Xiao Y; Yang Q Can J Microbiol; 2020 Jun; 66(6):401-412. PubMed ID: 32160477 [No Abstract] [Full Text] [Related]
13. Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties. Bóka B; Manczinger L; Kocsubé S; Shine K; Alharbi NS; Khaled JM; Münsterkötter M; Vágvölgyi C; Kredics L World J Microbiol Biotechnol; 2019 Mar; 35(3):52. PubMed ID: 30868269 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Dowarah B; Agarwal H; Krishnatreya DB; Sharma PL; Kalita N; Agarwala N Microbiol Res; 2021 Jul; 248():126751. PubMed ID: 33839507 [TBL] [Abstract][Full Text] [Related]
15. Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. Ji X; Lu G; Gai Y; Gao H; Lu B; Kong L; Mu Z BMC Microbiol; 2010 Sep; 10():243. PubMed ID: 20854669 [TBL] [Abstract][Full Text] [Related]
16. Environmental Adaptations of an Extremely Plant Beneficial Bacillus subtilis Dcl1 Identified Through the Genomic and Metabolomic Analysis. Jayakumar A; Nair IC; Radhakrishnan EK Microb Ecol; 2021 Apr; 81(3):687-702. PubMed ID: 33078238 [TBL] [Abstract][Full Text] [Related]
17. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Fan H; Ru J; Zhang Y; Wang Q; Li Y Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713 [TBL] [Abstract][Full Text] [Related]
18. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. Su Z; Chen X; Liu X; Guo Q; Li S; Lu X; Zhang X; Wang P; Dong L; Zhao W; Ma P BMC Genomics; 2020 Nov; 21(1):767. PubMed ID: 33153447 [TBL] [Abstract][Full Text] [Related]
19. [Screening, identification and optimization of fermentation conditions of an antagonistic endophyte to mulberry bacterial blight]. Zhang F; Gao Y; Ren H; Qiu L; Zuo W; Zhou Z; Xie J Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1285-94. PubMed ID: 24697101 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. Chen L; Heng J; Qin S; Bian K PLoS One; 2018; 13(6):e0198560. PubMed ID: 29856856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]