These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30178630)

  • 21. Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins.
    Kang JH; Walter R; Xie D; Davis T; Chen CY; Davis ME; Zones SI
    Chemphyschem; 2018 Feb; 19(4):412-419. PubMed ID: 29211929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress in Methanol-to-Olefins (MTO) Catalysts.
    Yang M; Fan D; Wei Y; Tian P; Liu Z
    Adv Mater; 2019 Dec; 31(50):e1902181. PubMed ID: 31496008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physicochemical characteristics of SAPO-34 molecular sieves synthesized with mixed templates as MTO catalysts.
    Chae HJ; Park IJ; Song YH; Jeong KE; Kim CU; Shin CH; Jeong SY
    J Nanosci Nanotechnol; 2010 Jan; 10(1):195-202. PubMed ID: 20352833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of synthesis time and type of seed along with reduction of template consumption in the preparation of SAPO-34 catalyst and its performance in the MTO reaction.
    Akhgar S; Towfighi J; Hamidzadeh M
    RSC Adv; 2020 Sep; 10(57):34474-34485. PubMed ID: 35514429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-particle spectroscopy on large SAPO-34 crystals at work: methanol-to-olefin versus ethanol-to-olefin processes.
    Qian Q; Ruiz-Martínez J; Mokhtar M; Asiri AM; Al-Thabaiti SA; Basahel SN; van der Bij HE; Kornatowski J; Weckhuysen BM
    Chemistry; 2013 Aug; 19(34):11204-15. PubMed ID: 23881641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34.
    Mores D; Stavitski E; Kox MH; Kornatowski J; Olsbye U; Weckhuysen BM
    Chemistry; 2008; 14(36):11320-7. PubMed ID: 19021162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPO-34 with Tunable Acid Properties.
    Miletto I; Paul G; Chapman S; Gatti G; Marchese L; Raja R; Gianotti E
    Chemistry; 2017 Jul; 23(41):9952-9961. PubMed ID: 28574168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The recyclable synthesis of hierarchical zeolite SAPO-34 with excellent MTO catalytic performance.
    Xi D; Sun Q; Chen X; Wang N; Yu J
    Chem Commun (Camb); 2015 Aug; 51(60):11987-9. PubMed ID: 26121259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Presenting a Four-Lump Dynamic Kinetic Model for Methanol to Light Olefins Process Over the Hierarchical SAPO-34 Catalyst Using Power Law Models.
    Azarhoosh MJ; Azarhoosh AR
    Comb Chem High Throughput Screen; 2021; 24(4):570-580. PubMed ID: 32933454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling templated-regulated distribution of isolated SiO
    Li Y; Shi C; Li L; Yang G; Li J; Xu J; Gu Q; Wang X; Han J; Zhang T; Li Y; Yu J
    Natl Sci Rev; 2022 Sep; 9(9):nwac094. PubMed ID: 36128458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine.
    Liu Y; Qu W; Chang W; Pan S; Tian Z; Meng X; Rigutto M; van der Made A; Zhao L; Zheng X; Xiao FS
    J Colloid Interface Sci; 2014 Mar; 418():193-9. PubMed ID: 24461835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion.
    Yang L; Wang C; Zhang L; Dai W; Chu Y; Xu J; Wu G; Gao M; Liu W; Xu Z; Wang P; Guan N; Dyballa M; Ye M; Deng F; Fan W; Li L
    Nat Commun; 2021 Aug; 12(1):4661. PubMed ID: 34341350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Hierarchical Porous SAPO-34 and Its Catalytic Activity for 4,6-Dimethyldibenzothiophene.
    Wang HQ; Cui YQ; Ding YL; Xiang M; Yu P; Li RQ
    Front Chem; 2022; 10():854664. PubMed ID: 35360531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity.
    Zhou J; Gao M; Zhang J; Liu W; Zhang T; Li H; Xu Z; Ye M; Liu Z
    Nat Commun; 2021 Jan; 12(1):17. PubMed ID: 33397957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing the crystallinity and acidity of H-SAPO-34 by fluoride for synthesizing Cu/SAPO-34 NH3-SCR catalyst.
    Ma J; Si Z; Wu X; Weng D; Ma Y
    J Environ Sci (China); 2016 Mar; 41():244-251. PubMed ID: 26969071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Feedstock and Catalyst Impurities on the Methanol-to-Olefin Reaction over H-SAPO-34.
    Vogt C; Weckhuysen BM; Ruiz-Martínez J
    ChemCatChem; 2017 Jan; 9(1):183-194. PubMed ID: 28163792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directional Construction of Active Naphthalenic Species within SAPO-34 Crystals toward More Efficient Methanol-to-Olefin Conversion.
    Wang C; Yang L; Gao M; Shao X; Dai W; Wu G; Guan N; Xu Z; Ye M; Li L
    J Am Chem Soc; 2022 Nov; 144(46):21408-21416. PubMed ID: 36303461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of catalytic performance of metal-modified SAPO-34: a molecular simulation study.
    Dong X; Liu C; Miao Q; Yu Y; Zhang M
    J Mol Model; 2019 Aug; 25(9):270. PubMed ID: 31448378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Achieving highly selective CO
    Li Y; Chen H; Wang C; Ye Y; Li L; Song X; Yu J
    Chem Sci; 2022 May; 13(19):5687-5692. PubMed ID: 35694348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective Transformation of CO
    Dang S; Li S; Yang C; Chen X; Li X; Zhong L; Gao P; Sun Y
    ChemSusChem; 2019 Aug; 12(15):3582-3591. PubMed ID: 31197936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.