These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 30178630)
41. Selective Transformation of CO Dang S; Li S; Yang C; Chen X; Li X; Zhong L; Gao P; Sun Y ChemSusChem; 2019 Aug; 12(15):3582-3591. PubMed ID: 31197936 [TBL] [Abstract][Full Text] [Related]
42. Control of Surface Barriers in Mass Transfer to Modulate Methanol-to-Olefins Reaction over SAPO-34 Zeolites. Peng S; Gao M; Li H; Yang M; Ye M; Liu Z Angew Chem Int Ed Engl; 2020 Dec; 59(49):21945-21948. PubMed ID: 32881203 [TBL] [Abstract][Full Text] [Related]
43. Investigation of Suitable Templates for One-Pot-Synthesized Cu-SAPO-34 in NO Du J; Shi X; Shan Y; Zhang W; Yu Y; Shan W; He H Environ Sci Technol; 2020 Jul; 54(13):7870-7878. PubMed ID: 32544321 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes. Yang L; Li H; Fu JY; Li M; Miao C; Wang Z; Lv P; Yuan Z RSC Adv; 2019 Oct; 9(59):34457-34464. PubMed ID: 35529960 [TBL] [Abstract][Full Text] [Related]
45. Coke formation and carbon atom economy of methanol-to-olefins reaction. Wei Y; Yuan C; Li J; Xu S; Zhou Y; Chen J; Wang Q; Xu L; Qi Y; Zhang Q; Liu Z ChemSusChem; 2012 May; 5(5):906-12. PubMed ID: 22359363 [TBL] [Abstract][Full Text] [Related]
46. N-methyldiethanolamine: a multifunctional structure-directing agent for the synthesis of SAPO and AlPO molecular sieves. Wang D; Tian P; Fan D; Yang M; Gao B; Qiao Y; Wang C; Liu Z J Colloid Interface Sci; 2015 May; 445():119-126. PubMed ID: 25616250 [TBL] [Abstract][Full Text] [Related]
47. The beneficial use of ultrasound in synthesis of nanostructured Ce-doped SAPO-34 used in methanol conversion to light olefins. Charghand M; Haghighi M; Aghamohammadi S Ultrason Sonochem; 2014 Sep; 21(5):1827-38. PubMed ID: 24704064 [TBL] [Abstract][Full Text] [Related]
48. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
49. Cavity-controlled methanol conversion over zeolite catalysts. Zhang W; Lin S; Wei Y; Tian P; Ye M; Liu Z Natl Sci Rev; 2023 Sep; 10(9):nwad120. PubMed ID: 37565191 [TBL] [Abstract][Full Text] [Related]
50. Light Olefin Diffusion during the MTO Process on H-SAPO-34: A Complex Interplay of Molecular Factors. Cnudde P; Demuynck R; Vandenbrande S; Waroquier M; Sastre G; Speybroeck VV J Am Chem Soc; 2020 Apr; 142(13):6007-6017. PubMed ID: 32157875 [TBL] [Abstract][Full Text] [Related]
51. Synthesis of sub-micrometric SAPO-34 by a morpholine assisted two-step hydrothermal route and its excellent MTO catalytic performance. Bakhtiar SUH; Ali S; Wang X; Yuan F; Li Z; Zhu Y Dalton Trans; 2019 Feb; 48(8):2606-2616. PubMed ID: 30706909 [TBL] [Abstract][Full Text] [Related]
52. Micron-Sized Zeolite Beta Single Crystals Featuring Intracrystal Interconnected Ordered Macro-Meso-Microporosity Displaying Superior Catalytic Performance. Sun MH; Chen LH; Yu S; Li Y; Zhou XG; Hu ZY; Sun YH; Xu Y; Su BL Angew Chem Int Ed Engl; 2020 Oct; 59(44):19582-19591. PubMed ID: 32643251 [TBL] [Abstract][Full Text] [Related]
53. MAPO-18 Catalysts for the Methanol to Olefins Process: Influence of Catalyst Acidity in a High-Pressure Syngas (CO and H Xie J; Firth DS; Cordero-Lanzac T; Airi A; Negri C; Øien-Ødegaard S; Lillerud KP; Bordiga S; Olsbye U ACS Catal; 2022 Jan; 12(2):1520-1531. PubMed ID: 35096471 [TBL] [Abstract][Full Text] [Related]
55. Hierarchical SAPO-34 Catalysts as Host for Cu Active Sites. Fernandes Pape Brito JC; Miletto I; Marchese L; Ali D; Azim MM; Mathisen K; Gianotti E Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629985 [TBL] [Abstract][Full Text] [Related]
56. Three-dimensional imaging and analysis of the internal structure of SAPO-34 zeolite crystals. Bai X; Chen B; Yang F; Liu X; Silva-Nunes D; Robinson I RSC Adv; 2018 Sep; 8(59):33631-33636. PubMed ID: 35548840 [TBL] [Abstract][Full Text] [Related]
57. Hierarchical H-ZSM5 zeolites based on natural kaolinite as a high-performance catalyst for methanol to aromatic hydrocarbons conversion. Asghari A; Khorrami MK; Kazemi SH Sci Rep; 2019 Nov; 9(1):17526. PubMed ID: 31772315 [TBL] [Abstract][Full Text] [Related]
58. ZSM-5 Catalysts for MTO: Effect and Optimization of the Tetrapropylammonium Hydroxide Concentration on Synthesis and Performance. Sanhoob MA; Khan A; Ummer AC ACS Omega; 2022 Jun; 7(25):21654-21663. PubMed ID: 35785282 [TBL] [Abstract][Full Text] [Related]
59. Influence of Si distribution in framework of SAPO-34 and its particle size on propylene selectivity and production rate for conversion of ethylene to propylene. Iwase Y; Motokura K; Koyama TR; Miyaji A; Baba T Phys Chem Chem Phys; 2009 Oct; 11(40):9268-77. PubMed ID: 19812848 [TBL] [Abstract][Full Text] [Related]
60. Combined Ex and In Situ Measurements Elucidate the Dynamics of Retained Species in ZSM-5 and SAPO-18 Catalysts Used in the Methanol-to-Olefins Reaction. Valecillos J; Ruiz-Martinez J; Aguayo AT; Castaño P Chemistry; 2021 Apr; 27(22):6719-6731. PubMed ID: 33347673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]