These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30178667)

  • 1. Temperature Effects on Water-Mediated Interactions at the Nanoscale.
    Engstler J; Giovambattista N
    J Phys Chem B; 2018 Sep; 122(38):8908-8920. PubMed ID: 30178667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study of the Effects of Temperature and Pressure on the Water-Mediated Interactions between Apolar Nanoscale Solutes.
    Engstler J; Giovambattista N
    J Phys Chem B; 2019 Feb; 123(5):1116-1128. PubMed ID: 30592598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces.
    Giovambattista N; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2009 Oct; 113(42):13723-34. PubMed ID: 19435300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of Water-Mediated Interactions between Hydrophilic and Hydrophobic Nanoscale Surfaces.
    Kopel Y; Giovambattista N
    J Phys Chem B; 2019 Dec; 123(50):10814-10824. PubMed ID: 31750656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates.
    Giovambattista N; Rossky PJ; Debenedetti PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041604. PubMed ID: 16711818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of temperature on the thermodynamic and dynamical properties of glycerol-water mixtures: a computer simulation study of three different force fields.
    Akinkunmi FO; Jahn DA; Giovambattista N
    J Phys Chem B; 2015 May; 119(20):6250-61. PubMed ID: 25901644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics and energetics of hydrophobically confined water.
    Bauer BA; Ou S; Patel S; Siva K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051506. PubMed ID: 23004766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing hydrophobicity at the nanoscale: a molecular dynamics simulation study.
    Bandyopadhyay D; Choudhury N
    J Chem Phys; 2012 Jun; 136(22):224505. PubMed ID: 22713055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation study of interaction between model rough hydrophobic surfaces.
    Eun C; Berkowitz ML
    J Phys Chem A; 2011 Jun; 115(23):6059-67. PubMed ID: 21495665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates.
    Kumar P; Buldyrev SV; Starr FW; Giovambattista N; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051503. PubMed ID: 16383607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.
    Wong J; Jahn DA; Giovambattista N
    J Chem Phys; 2015 Aug; 143(7):074501. PubMed ID: 26298139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuations in number of water molecules confined between nanoparticles.
    Eun C; Berkowitz ML
    J Phys Chem B; 2010 Oct; 114(42):13410-4. PubMed ID: 20925366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and hydrogen-bonding analyses of the interaction between model lipid bilayers.
    Eun C; Berkowitz ML
    J Phys Chem B; 2010 Mar; 114(8):3013-9. PubMed ID: 20143884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of high-density water: its glass transition for various water models.
    Jehser M; Seidl M; Rauer C; Loerting T; Zifferer G
    J Chem Phys; 2014 Apr; 140(13):134504. PubMed ID: 24712798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing Transitions of Nanoconfined Coarse-Grained Water Show Subtle Dependence on Confining Environment.
    Lu Q; Straub JE
    J Phys Chem B; 2016 Mar; 120(9):2517-25. PubMed ID: 26906259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates.
    Ferguson AL; Giovambattista N; Rossky PJ; Panagiotopoulos AZ; Debenedetti PG
    J Chem Phys; 2012 Oct; 137(14):144501. PubMed ID: 23061849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk supercooled water
    Puibasset J; Judeinstein P; Zanotti JM
    Phys Chem Chem Phys; 2021 Jan; 23(3):2275-2285. PubMed ID: 33443254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model.
    Engstler J; Giovambattista N
    J Chem Phys; 2017 Aug; 147(7):074505. PubMed ID: 28830166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of mean force between hydrophobic solutes in the Jagla model of water and implications for cold denaturation of proteins.
    Maiti M; Weiner S; Buldyrev SV; Stanley HE; Sastry S
    J Chem Phys; 2012 Jan; 136(4):044512. PubMed ID: 22299896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.