BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30178785)

  • 1. Tuning the size of gold nanoparticles produced by multiple filamentation of femtosecond laser pulses in aqueous solutions.
    Belmouaddine H; Shi M; Sanche L; Houde D
    Phys Chem Chem Phys; 2018 Sep; 20(36):23403-23413. PubMed ID: 30178785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense ionization and subsequent non-homogeneous radical-mediated chemistry of femtosecond laser-induced low density plasma in aqueous solutions: synthesis of colloidal gold.
    Belmouaddine H; Shi M; Karsenti PL; Meesat R; Sanche L; Houde D
    Phys Chem Chem Phys; 2017 Mar; 19(11):7897-7909. PubMed ID: 28262861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of Free Electrons and H
    Meader VK; John MG; Rodrigues CJ; Tibbetts KM
    J Phys Chem A; 2017 Sep; 121(36):6742-6754. PubMed ID: 28813154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filamentary plasma grating induced by interference of two femtosecond laser pulses in water.
    Liu F; Yuan S; He B; Nan J; Jiang M; Khan AQ; Ding L; Yu J; Zeng H
    Opt Express; 2017 Sep; 25(19):22303-22311. PubMed ID: 29041543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.
    Meesat R; Belmouaddine H; Allard JF; Tanguay-Renaud C; Lemay R; Brastaviceanu T; Tremblay L; Paquette B; Wagner JR; Jay-Gerin JP; Lepage M; Huels MA; Houde D
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):E2508-13. PubMed ID: 22927378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water.
    Maximova K; Aristov A; Sentis M; Kabashin AV
    Nanotechnology; 2015 Feb; 26(6):065601. PubMed ID: 25605000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas.
    Cain CP; Thomas RJ; Noojin GD; Stolarski DJ; Kennedy PK; Buffington GD; Rockwell BA
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):101-12. PubMed ID: 15241612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation synthesis and characterization of hyaluronan capped gold nanoparticles.
    Hien NQ; Van Phu D; Duy NN; Quoc le A
    Carbohydr Polym; 2012 Jun; 89(2):537-41. PubMed ID: 24750755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells.
    Abdelhamid HN; Wu HF
    Anal Bioanal Chem; 2016 Jul; 408(17):4485-502. PubMed ID: 26973236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl
    Rodrigues CJ; Bobb JA; John MG; Fisenko SP; El-Shall MS; Tibbetts KM
    Phys Chem Chem Phys; 2018 Nov; 20(45):28465-28475. PubMed ID: 30411753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 May; 109(19):9404-10. PubMed ID: 16852127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry.
    Lai HZ; Wang SG; Wu CY; Chen YC
    Anal Chem; 2015 Feb; 87(4):2114-20. PubMed ID: 25587929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanotriangle Formation through Strong-Field Laser Processing of Aqueous KAuCl
    Tangeysh B; Tibbetts KM; Odhner JH; Wayland BB; Levis RJ
    Langmuir; 2017 Jan; 33(1):243-252. PubMed ID: 27983860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
    Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM
    Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.
    Boutopoulos C; Hatef A; Fortin-DeschĂȘnes M; Meunier M
    Nanoscale; 2015 Jul; 7(27):11758-65. PubMed ID: 26104482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry.
    Kawasaki H; Sugitani T; Watanabe T; Yonezawa T; Moriwaki H; Arakawa R
    Anal Chem; 2008 Oct; 80(19):7524-33. PubMed ID: 18778032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control.
    Zhao M; Hu J; Jiang L; Zhang K; Liu P; Lu Y
    Sci Rep; 2015 Aug; 5():13202. PubMed ID: 26307148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of laser-induced size-reduction of gold nanoparticles as studied by nanosecond transient absorption spectroscopy.
    Yamada K; Tokumoto Y; Nagata T; Mafuné F
    J Phys Chem B; 2006 Jun; 110(24):11751-6. PubMed ID: 16800473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air.
    Liu J; Duan Z; Zeng Z; Xie X; Deng Y; Li R; Xu Z; Chin SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026412. PubMed ID: 16196723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.