These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30179163)

  • 1. Reduced muscle fatigue using kilohertz-frequency subthreshold stimulation of the proximal nerve.
    Zheng Y; Hu X
    J Neural Eng; 2018 Dec; 15(6):066010. PubMed ID: 30179163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved muscle activation using proximal nerve stimulation with subthreshold current pulses at kilohertz-frequency.
    Zheng Y; Hu X
    J Neural Eng; 2018 Aug; 15(4):046001. PubMed ID: 29569574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle Fatigue Post-stroke Elicited From Kilohertz-Frequency Subthreshold Nerve Stimulation.
    Zheng Y; Shin H; Hu X
    Front Neurol; 2018; 9():1061. PubMed ID: 30564190
    [No Abstract]   [Full Text] [Related]  

  • 4. Delayed fatigue in finger flexion forces through transcutaneous nerve stimulation.
    Shin H; Chen R; Hu X
    J Neural Eng; 2018 Dec; 15(6):066005. PubMed ID: 30150485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asynchronous axonal firing patterns evoked via continuous subthreshold kilohertz stimulation.
    Vargas L; Musselman ED; Grill WM; Hu X
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36881885
    [No Abstract]   [Full Text] [Related]  

  • 6. Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand.
    Fuglevand AJ; Macefield VG; Bigland-Ritchie B
    J Neurophysiol; 1999 Apr; 81(4):1718-29. PubMed ID: 10200207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force.
    Dideriksen J; Leerskov K; Czyzewska M; Rasmussen R
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2737-2745. PubMed ID: 28237919
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation.
    Gondin J; Giannesini B; Vilmen C; Dalmasso C; le Fur Y; Cozzone PJ; Bendahan D
    Muscle Nerve; 2010 May; 41(5):667-78. PubMed ID: 20082417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-pulse-high-frequency neuromuscular stimulation of triceps surae induces greater muscle fatigue compared with conventional stimulation.
    Neyroud D; Dodd D; Gondin J; Maffiuletti NA; Kayser B; Place N
    J Appl Physiol (1985); 2014 May; 116(10):1281-9. PubMed ID: 24674861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elicited Finger and Wrist Extension Through Transcutaneous Radial Nerve Stimulation.
    Zheng Y; Hu X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1875-1882. PubMed ID: 31352346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multichannel Nerve Stimulation for Diverse Activation of Finger Flexors.
    Shin H; Hu X
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2361-2368. PubMed ID: 31634137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG activity of finger flexor muscles and grip force following low-dose transcutaneous electrical nerve stimulation in healthy adult subjects.
    Kafri M; Zaltsberg N; Dickstein R
    Somatosens Mot Res; 2015; 32(1):1-7. PubMed ID: 25059799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation of excessive fatigue associated with functional electrical stimulation.
    Buckmire AJ; Arakeri TJ; Reinhard JP; Fuglevand AJ
    J Neural Eng; 2018 Dec; 15(6):066004. PubMed ID: 30168443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.
    Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ
    BMC Neurol; 2017 May; 17(1):82. PubMed ID: 28464800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG changes in human thenar motor units with force potentiation and fatigue.
    Thomas CK; Johansson RS; Bigland-Ritchie B
    J Neurophysiol; 2006 Mar; 95(3):1518-26. PubMed ID: 16267110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical development of transcutaneous electrical nerve inhibition using medium-frequency alternating current.
    Kim Y; Cho HJ; Park HS
    J Neuroeng Rehabil; 2018 Aug; 15(1):80. PubMed ID: 30126438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.
    van Bolhuis AI; Holsheimer J; Savelberg HH
    J Neurosci Methods; 2001 May; 107(1-2):87-92. PubMed ID: 11389945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.