These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 30179293)
1. Zirconium-Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming. Köpfle N; Götsch T; Grünbacher M; Carbonio EA; Hävecker M; Knop-Gericke A; Schlicker L; Doran A; Kober D; Gurlo A; Penner S; Klötzer B Angew Chem Int Ed Engl; 2018 Oct; 57(44):14613-14618. PubMed ID: 30179293 [TBL] [Abstract][Full Text] [Related]
2. Chemical vapor deposition-prepared sub-nanometer Zr clusters on Pd surfaces: promotion of methane dry reforming. Mayr L; Shi XR; Köpfle N; Milligan CA; Zemlyanov DY; Knop-Gericke A; Hävecker M; Klötzer B; Penner S Phys Chem Chem Phys; 2016 Nov; 18(46):31586-31599. PubMed ID: 27834976 [TBL] [Abstract][Full Text] [Related]
3. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177 [TBL] [Abstract][Full Text] [Related]
4. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO Rameshan C; Li H; Anic K; Roiaz M; Pramhaas V; Rameshan R; Blume R; Hävecker M; Knudsen J; Knop-Gericke A; Rupprechter G J Phys Condens Matter; 2018 Jul; 30(26):264007. PubMed ID: 29786619 [TBL] [Abstract][Full Text] [Related]
5. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834 [TBL] [Abstract][Full Text] [Related]
6. Rh/InGaN Li Y; Li J; Yu T; Qiu L; Hasan SMN; Yao L; Pan H; Arafin S; Sadaf SM; Zhu L; Zhou B Sci Bull (Beijing); 2024 May; 69(10):1400-1409. PubMed ID: 38402030 [TBL] [Abstract][Full Text] [Related]
7. Zirconium Carbide Mediates Coke-Resistant Methane Dry Reforming on Nickel-Zirconium Catalysts. Haug L; Thurner C; Bekheet MF; Bischoff B; Gurlo A; Kunz M; Sartory B; Penner S; Klötzer B Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202213249. PubMed ID: 36379010 [TBL] [Abstract][Full Text] [Related]
8. Ni Sheng K; Luan D; Jiang H; Zeng F; Wei B; Pang F; Ge J ACS Appl Mater Interfaces; 2019 Jul; 11(27):24078-24087. PubMed ID: 31194503 [TBL] [Abstract][Full Text] [Related]
9. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective. Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the Reaction Mechanism in Model Biogas Reforming by In Situ Transient and Steady-State DRIFTS Measurements. Bobadilla LF; Garcilaso V; Centeno MA; Odriozola JA ChemSusChem; 2017 Mar; 10(6):1193-1201. PubMed ID: 27910231 [TBL] [Abstract][Full Text] [Related]
12. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
13. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide. Hao ZP; Hu C; Jiang Z; Lu GQ J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662 [TBL] [Abstract][Full Text] [Related]
14. Activation and Conversion of Methane to Syngas over ZrO Huang E; Rui N; Rosales R; Liu P; Rodriguez JA J Am Chem Soc; 2023 Apr; ():. PubMed ID: 37017376 [TBL] [Abstract][Full Text] [Related]
15. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking. Liu Z; Grinter DC; Lustemberg PG; Nguyen-Phan TD; Zhou Y; Luo S; Waluyo I; Crumlin EJ; Stacchiola DJ; Zhou J; Carrasco J; Busnengo HF; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA Angew Chem Int Ed Engl; 2016 Jun; 55(26):7455-9. PubMed ID: 27144344 [TBL] [Abstract][Full Text] [Related]
16. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle. Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013 [TBL] [Abstract][Full Text] [Related]
17. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide. Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902 [TBL] [Abstract][Full Text] [Related]
18. Influence of the presence of ruthenium on the activity and stability of Co-Mg-Al-based catalysts in CO Gennequin C; Hany S; Tidahy HL; Aouad S; Estephane J; Aboukaïs A; Abi-Aad E Environ Sci Pollut Res Int; 2016 Nov; 23(22):22744-22760. PubMed ID: 27562810 [TBL] [Abstract][Full Text] [Related]
19. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium-Vanadium Bimetallic Oxide Cluster Anions at Room Temperature. Zhao YX; Yang B; Li HF; Zhang Y; Yang Y; Liu QY; Xu HG; Zheng WJ; He SG Angew Chem Int Ed Engl; 2020 Nov; 59(47):21216-21223. PubMed ID: 32767516 [TBL] [Abstract][Full Text] [Related]
20. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System. Oh J; Joo S; Lim C; Kim HJ; Ciucci F; Wang JQ; Han JW; Kim G Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202204990. PubMed ID: 35638132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]