BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 3017934)

  • 1. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF; Ellis WR; Wang H; Gray HB; Chan SI
    J Biol Chem; 1986 Sep; 261(25):11524-37. PubMed ID: 3017934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroelectrochemical study of the cytochrome a site in carbon monoxide inhibited cytochrome c oxidase.
    Ellis WR; Wang H; Blair DF; Gray HB; Chan SI
    Biochemistry; 1986 Jan; 25(1):161-7. PubMed ID: 3006749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal site cooperativity within cytochrome oxidase.
    Goodman G
    J Biol Chem; 1984 Dec; 259(24):15094-9. PubMed ID: 6096358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of the reduction potential of CuA in carbon monoxide inhibited cytochrome c oxidase.
    Wang H; Blair DF; Ellis WR; Gray HB; Chan SI
    Biochemistry; 1986 Jan; 25(1):167-71. PubMed ID: 3006750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electronic state of heme in cytochrome oxidase II. Oxidation-reduction potential interactions and heme iron spin state behavior observed in reductive titrations.
    Babcock GT; Vickery LE; Palmer G
    J Biol Chem; 1978 Apr; 253(7):2400-11. PubMed ID: 204649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Redox-dependent protonation of cytochrome oxidase hemes in submitochondrial particles of the bovine heart].
    Artsatbanov VIu; Grigor'ev VA; Konstantinov AA
    Biokhimiia; 1983 Jan; 48(1):46-53. PubMed ID: 6299407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate enhancement of the internal electron transfer in cytochrome c oxidase by the formation of a peroxide complex; its implication on the reaction mechanism of cytochrome c oxidase.
    Gorren AC; Dekker H; Vlegels L; Wever R
    Biochim Biophys Acta; 1988 Mar; 932(3):277-86. PubMed ID: 2831974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site.
    Hallén S; Brzezinski P; Malmström BG
    Biochemistry; 1994 Feb; 33(6):1467-72. PubMed ID: 8312266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme.
    Capitanio N; Capitanio G; Minuto M; De Nitto E; Palese LL; Nicholls P; Papa S
    Biochemistry; 2000 May; 39(21):6373-9. PubMed ID: 10828951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton interactions with hemes a and a3 in bovine heart cytochrome c oxidase.
    Parul D; Palmer G; Fabian M
    Biochemistry; 2005 Mar; 44(11):4562-71. PubMed ID: 15766287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of the two heme centers in cytochrome oxidase. The optical properties of cytochrome a and a3.
    Carter K; Palmer G
    J Biol Chem; 1982 Nov; 257(22):13507-14. PubMed ID: 6292192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB.
    Wrigglesworth JM; Elsden J; Chapman A; Van der Water N; Grahn MF
    Biochim Biophys Acta; 1988 Dec; 936(3):452-64. PubMed ID: 2848581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cytochrome a in the proton pump of cytochrome-c oxidase.
    Mueller M; Azzi A
    Biochimie; 1986 Mar; 68(3):401-6. PubMed ID: 2427122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer.
    Brzezinski P; Malmström BG
    Biochim Biophys Acta; 1987 Oct; 894(1):29-38. PubMed ID: 2444256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of two low Em forms of cytochrome a3 and their carbon monoxide complexes in mammalian cytochrome c oxidase.
    Sidhu GS; Hendler RW
    Biophys J; 1990 Jun; 57(6):1125-40. PubMed ID: 2168220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the spectra and redox properties of pure cytochromes aa3.
    Hendler RW; Reddy KV; Shrager RI; Caughey WS
    Biophys J; 1986 Mar; 49(3):717-29. PubMed ID: 3008873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroelectrochemical investigations of stoichiometry and oxidation-reduction potentials of cytochrome c oxidase components in the presence of carbon monoxide: the "invisible" copper.
    Anderson JL; Kuwana T; Hartzell CR
    Biochemistry; 1976 Aug; 15(17):3847-55. PubMed ID: 182219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH dependence of cytochrome a conformation in cytochrome c oxidase.
    Ishibe N; Lynch SR; Copeland RA
    J Biol Chem; 1991 Dec; 266(35):23916-20. PubMed ID: 1660888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and EPR characterization of mitochondrial succinate-cytochrome c reductase-phospholipid complexes.
    Leigh JS; Erecinska M
    Biochim Biophys Acta; 1975 Apr; 387(1):95-106. PubMed ID: 236028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.
    Papa S; Guerrieri F; Izzo G
    Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.