These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of high hydrostatic pressure on the dielectric relaxation in a non-crystallizable monohydroxy alcohol in its supercooled liquid and glassy states. Pawlus S; Paluch M; Nagaraj M; Vij JK J Chem Phys; 2011 Aug; 135(8):084507. PubMed ID: 21895199 [TBL] [Abstract][Full Text] [Related]
4. Glassy dynamics under superhigh pressure. Pronin AA; Kondrin MV; Lyapin AG; Brazhkin VV; Volkov AA; Lunkenheimer P; Loidl A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041503. PubMed ID: 20481727 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes. Chua YZ; Young-Gonzales AR; Richert R; Ediger MD; Schick C J Chem Phys; 2017 Jul; 147(1):014502. PubMed ID: 28688431 [TBL] [Abstract][Full Text] [Related]
6. Dielectric spectroscopy and ultrasonic study of propylene carbonate under ultra-high pressures. Kondrin MV; Gromnitskaya EL; Pronin AA; Lyapin AG; Brazhkin VV; Volkov AA J Chem Phys; 2012 Aug; 137(8):084502. PubMed ID: 22938245 [TBL] [Abstract][Full Text] [Related]
7. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model. Ngai KL J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256 [TBL] [Abstract][Full Text] [Related]
8. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions. Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974 [TBL] [Abstract][Full Text] [Related]
9. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). Pawlus S; Mierzwa M; Paluch M; Rzoska SJ; Roland CM J Phys Condens Matter; 2010 Jun; 22(23):235101. PubMed ID: 21393760 [TBL] [Abstract][Full Text] [Related]
10. Test of the Einstein-Debye relation in supercooled dibutylphthalate at pressures up to 1.4 GPa. Paluch M; Sekula M; Pawlus S; Rzoska SJ; Ziolo J; Roland CM Phys Rev Lett; 2003 May; 90(17):175702. PubMed ID: 12786082 [TBL] [Abstract][Full Text] [Related]
11. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure. Kaminska E; Kaminski K; Paluch M; Ngai KL J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150 [TBL] [Abstract][Full Text] [Related]
12. Emergence of a new feature in the high pressure-high temperature relaxation spectrum of tri-propylene glycol. Prevosto D; Capaccioli S; Lucchesi M; Rolla PA; Paluch M; Pawlus S; Zioło J J Chem Phys; 2005 Feb; 122(6):061102. PubMed ID: 15740359 [TBL] [Abstract][Full Text] [Related]
13. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols. Yomogida Y; Minoguchi A; Nozaki R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041510. PubMed ID: 16711812 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework. Prevosto D; Capaccioli S; Lucchesi M; Rolla PA; Ngai KL J Chem Phys; 2004 Mar; 120(10):4808-15. PubMed ID: 15267341 [TBL] [Abstract][Full Text] [Related]
15. Two secondary modes in decahydroisoquinoline: which one is the true Johari Goldstein process? Paluch M; Pawlus S; Hensel-Bielowka S; Kaminska E; Prevosto D; Capaccioli S; Rolla PA; Ngai KL J Chem Phys; 2005 Jun; 122(23):234506. PubMed ID: 16008461 [TBL] [Abstract][Full Text] [Related]
16. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure. Wojnarowska Z; Swiety-Pospiech A; Grzybowska K; Hawelek L; Paluch M; Ngai KL J Chem Phys; 2012 Apr; 136(16):164507. PubMed ID: 22559496 [TBL] [Abstract][Full Text] [Related]
17. Does the arrhenius temperature dependence of the Johari-Goldstein relaxation persist above T(g)? Paluch M; Roland CM; Pawlus S; Zioło J; Ngai KL Phys Rev Lett; 2003 Sep; 91(11):115701. PubMed ID: 14525441 [TBL] [Abstract][Full Text] [Related]
18. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol. Ngai KL; Wang LM J Phys Chem B; 2019 Jan; 123(3):714-719. PubMed ID: 30601008 [TBL] [Abstract][Full Text] [Related]
19. Broadband dielectric spectroscopy on benzophenone: alpha relaxation, beta relaxation, and mode coupling theory. Lunkenheimer P; Pardo LC; Köhler M; Loidl A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031506. PubMed ID: 18517387 [TBL] [Abstract][Full Text] [Related]
20. Dielectric spectroscopy in benzophenone: the beta relaxation and its relation to the mode-coupling Cole-Cole peak. Pardo LC; Lunkenheimer P; Loidl A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):030502. PubMed ID: 17930190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]