BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 30179511)

  • 1. CuS Nanodot-Loaded Thermosensitive Hydrogel for Anticancer Photothermal Therapy.
    Fu JJ; Zhang JY; Li SP; Zhang LM; Lin ZX; Liang L; Qin AP; Yu XY
    Mol Pharm; 2018 Oct; 15(10):4621-4631. PubMed ID: 30179511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable hydrogel encapsulating Cu
    Fu JJ; Chen MY; Li JX; Zhou JH; Xie SN; Yuan P; Tang B; Liu CC
    J Nanobiotechnology; 2018 Oct; 16(1):83. PubMed ID: 30368238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prussian blue nanosphere-embedded
    Fu J; Wu B; Wei M; Huang Y; Zhou Y; Zhang Q; Du L
    Acta Pharm Sin B; 2019 May; 9(3):604-614. PubMed ID: 31193840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.
    Liu C; Guo X; Ruan C; Hu H; Jiang BP; Liang H; Shen XC
    Acta Biomater; 2019 Sep; 96():281-294. PubMed ID: 31319202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose.
    Meng Z; Chao Y; Zhou X; Liang C; Liu J; Zhang R; Cheng L; Yang K; Pan W; Zhu M; Liu Z
    ACS Nano; 2018 Sep; 12(9):9412-9422. PubMed ID: 30148960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermosensitive drug-loading system based on copper sulfide nanoparticles for combined photothermal therapy and chemotherapy in vivo.
    Yuan Z; Qu S; He Y; Xu Y; Liang L; Zhou X; Gui L; Gu Y; Chen H
    Biomater Sci; 2018 Nov; 6(12):3219-3230. PubMed ID: 30255863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy.
    Zhou M; Li J; Liang S; Sood AK; Liang D; Li C
    ACS Nano; 2015 Jul; 9(7):7085-96. PubMed ID: 26098195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo.
    Zhang C; Fu YY; Zhang X; Yu C; Zhao Y; Sun SK
    Dalton Trans; 2015 Aug; 44(29):13112-8. PubMed ID: 26106950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Functionalized Modified Copper Sulfide Nanoparticles Enhance Checkpoint Blockade Tumor Immunotherapy by Photothermal Therapy and Antigen Capturing.
    Wang R; He Z; Cai P; Zhao Y; Gao L; Yang W; Zhao Y; Gao X; Gao F
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):13964-13972. PubMed ID: 30912920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable zwitterionic thermosensitive hydrogels with low-protein adsorption and combined effect of photothermal-chemotherapy.
    Zheng A; Wu D; Fan M; Wang H; Liao Y; Wang Q; Yang Y
    J Mater Chem B; 2020 Dec; 8(46):10637-10649. PubMed ID: 33147312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy.
    Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X
    Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of synergistic therapy system with multiple therapeutic effects based on CuS@Tf nanodots.
    Zhu C; Yin X; Li X; Wang Y
    J Inorg Biochem; 2020 Aug; 209():111100. PubMed ID: 32502874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black phosphorus nanosheets and gemcitabine encapsulated thermo-sensitive hydrogel for synergistic photothermal-chemotherapy.
    Qin L; Ling G; Peng F; Zhang F; Jiang S; He H; Yang D; Zhang P
    J Colloid Interface Sci; 2019 Nov; 556():232-238. PubMed ID: 31446336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy.
    Bai J; Liu Y; Jiang X
    Biomaterials; 2014 Jul; 35(22):5805-13. PubMed ID: 24767788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable and Temperature-Sensitive Titanium Carbide-Loaded Hydrogel System for Photothermal Therapy of Breast Cancer.
    Yao J; Zhu C; Peng T; Ma Q; Gao S
    Front Bioeng Biotechnol; 2021; 9():791891. PubMed ID: 35004650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo.
    Peng S; He Y; Er M; Sheng Y; Gu Y; Chen H
    Biomater Sci; 2017 Feb; 5(3):475-484. PubMed ID: 28078340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of injectable CuS nanocomposite hydrogels based on UCST-type polysaccharides for NIR-triggered chemo-photothermal therapy.
    Zheng Y; Liang Y; Zhang D; Zhou Z; Li J; Sun X; Liu YN
    Chem Commun (Camb); 2018 Dec; 54(98):13805-13808. PubMed ID: 30457602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An injectable thermosensitive hydrogel loaded with a theranostic nanoprobe for synergistic chemo-photothermal therapy for multidrug-resistant hepatocellular carcinoma.
    Huang S; Ma Z; Sun C; Zhou Q; Li Z; Wang S; Yan Q; Liu C; Hou B; Zhang C
    J Mater Chem B; 2022 Apr; 10(15):2828-2843. PubMed ID: 35316319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifouling Dendrimer-Entrapped Copper Sulfide Nanoparticles Enable Photoacoustic Imaging-Guided Targeted Combination Therapy of Tumors and Tumor Metastasis.
    Ouyang Z; Li D; Xiong Z; Song C; Gao Y; Liu R; Shen M; Shi X
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6069-6080. PubMed ID: 33501834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable composite hydrogels embedded with gallium-based liquid metal particles for solid breast cancer treatment via chemo-photothermal combination.
    Lee W; Shin MJ; Kim S; Lee CE; Choi J; Koo HJ; Choi MJ; Kim JH; Kim K
    Acta Biomater; 2024 May; 180():140-153. PubMed ID: 38604467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.