These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30179794)

  • 1. How important is sample alignment in planar biaxial testing of anisotropic soft biological tissues? A finite element study.
    Fehervary H; Vastmans J; Vander Sloten J; Famaey N
    J Mech Behav Biomed Mater; 2018 Dec; 88():201-216. PubMed ID: 30179794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an improved parameter fitting method for planar biaxial testing using rakes.
    Fehervary H; Vander Sloten J; Famaey N
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3174. PubMed ID: 30489696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar biaxial testing of soft biological tissue using rakes: A critical analysis of protocol and fitting process.
    Fehervary H; Smoljkić M; Vander Sloten J; Famaey N
    J Mech Behav Biomed Mater; 2016 Aug; 61():135-151. PubMed ID: 26854936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations.
    Zhang W; Feng Y; Lee CH; Billiar KL; Sacks MS
    J Biomech Eng; 2015 Jun; 137(6):064501. PubMed ID: 25429606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constrained mixture modeling affects material parameter identification from planar biaxial tests.
    Maes L; Fehervary H; Vastmans J; Mousavi SJ; Avril S; Famaey N
    J Mech Behav Biomed Mater; 2019 Jul; 95():124-135. PubMed ID: 30991171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved parameter fitting approach of a planar biaxial test including the experimental prestretch.
    Vander Linden K; Fehervary H; Maes L; Famaey N
    J Mech Behav Biomed Mater; 2022 Oct; 134():105389. PubMed ID: 35932647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy.
    Jacobs NT; Cortes DH; Vresilovic EJ; Elliott DM
    J Biomech Eng; 2013 Feb; 135(2):021004. PubMed ID: 23445049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining displacement field and grip force information to determine mechanical properties of planar tissue with complicated geometry.
    Nagel TM; Hadi MF; Claeson AA; Nuckley DJ; Barocas VH
    J Biomech Eng; 2014 Nov; 136(11):1145011-5. PubMed ID: 25103887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the correct interpretation of measured force and calculation of material stress in biaxial tests.
    Nolan DR; McGarry JP
    J Mech Behav Biomed Mater; 2016 Jan; 53():187-199. PubMed ID: 26327453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison.
    Evin M; Sudres P; Weber P; Godio-Raboutet Y; Arnoux PJ; Wagnac E; Petit Y; Tillier Y
    Acta Biomater; 2022 Mar; 140():446-456. PubMed ID: 34838701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the apron in the mechanical characterisation of hyperelastic materials by means of biaxial testing: A new method to improve accuracy.
    Di Leonardo S; Monteleone A; Caruso P; Meecham-Garcia H; Pitarresi G; Burriesci G
    J Mech Behav Biomed Mater; 2024 Feb; 150():106291. PubMed ID: 38103333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues.
    Sun W; Sacks MS; Scott MJ
    J Biomech Eng; 2005 Aug; 127(4):709-15. PubMed ID: 16121542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations.
    Strbac V; Pierce DM; Vander Sloten J; Famaey N
    Comput Methods Biomech Biomed Engin; 2017 Dec; 20(16):1643-1657. PubMed ID: 29199498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation and validation of constitutive relations for human dermis mechanical response.
    Aldieri A; Terzini M; Bignardi C; Zanetti EM; Audenino AL
    Med Biol Eng Comput; 2018 Nov; 56(11):2083-2093. PubMed ID: 29777504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material characterization of cardiovascular biomaterials using an inverse finite-element method and an explicit solver.
    Nightingale M; Labrosse MR
    J Biomech; 2018 Oct; 79():207-211. PubMed ID: 30060921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel-Gasser-Ogden Material.
    Momeni Shahraki N; Fatemi A; Goel VK; Agarwal A
    Front Bioeng Biotechnol; 2015; 3():69. PubMed ID: 26090359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.