These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30179995)

  • 21. Is emmetropia the natural endpoint for human refractive development? An analysis of population-based data from the refractive error study in children (RESC).
    Morgan IG; Rose KA; Ellwein LB;
    Acta Ophthalmol; 2010 Dec; 88(8):877-84. PubMed ID: 19958289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chicks use changes in luminance and chromatic contrast as indicators of the sign of defocus.
    Rucker FJ; Wallman J
    J Vis; 2012 Jun; 12(6):. PubMed ID: 22715194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dependency between light intensity and refractive development under light-dark cycles.
    Cohen Y; Belkin M; Yehezkel O; Solomon AS; Polat U
    Exp Eye Res; 2011 Jan; 92(1):40-6. PubMed ID: 21055401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wavelength Defocus and Temporal Sensitivity Affect Refractive Development in Guinea Pigs.
    Tian T; Zou L; Wu S; Liu H; Liu R
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2173-2180. PubMed ID: 31108548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick.
    Tse DY; To CH
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8056-62. PubMed ID: 21911586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral composition of artificial illuminants and their effect on eye growth in chicks.
    Yoon H; Taylor CP; Rucker F
    Exp Eye Res; 2021 Jun; 207():108602. PubMed ID: 33930397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refractive state of tree shrew eyes measured with cortical visual evoked potentials.
    Norton TT; Wu WW; Siegwart JT
    Optom Vis Sci; 2003 Sep; 80(9):623-31. PubMed ID: 14502042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eyes of a lower vertebrate are susceptible to the visual environment.
    Shen W; Sivak JG
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4829-37. PubMed ID: 17898310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of intensity, spectral purity and duty cycle on red light-induced hyperopia in tree shrews.
    Gawne TJ; Samal AV; She Z
    Ophthalmic Physiol Opt; 2023 Nov; 43(6):1419-1426. PubMed ID: 37431102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response to interrupted hyperopia after restraint of axial elongation in tree shrews.
    Siegwart JT; Norton TT
    Optom Vis Sci; 2013 Feb; 90(2):131-9. PubMed ID: 23314128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limited bandwidth short-wavelength light produces slowly-developing myopia in tree shrews similar to human juvenile-onset myopia.
    Khanal S; Norton TT; Gawne TJ
    Vision Res; 2023 Mar; 204():108161. PubMed ID: 36529048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Individual set-point and gain of emmetropization in chickens.
    Tepelus TC; Schaeffel F
    Vision Res; 2010 Jan; 50(1):57-64. PubMed ID: 19819252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology.
    Sajdak BS; Salmon AE; Cava JA; Allen KP; Freling S; Ramamirtham R; Norton TT; Roorda A; Carroll J
    Exp Eye Res; 2019 Aug; 185():107683. PubMed ID: 31158381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of temporal and spatial stimuli on the refractive status of guinea pigs following natural emmetropization.
    Zhi Z; Pan M; Xie R; Xiong S; Zhou X; Qu J
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):890-7. PubMed ID: 23307951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peripheral refraction and refractive error in singapore chinese children.
    Sng CC; Lin XY; Gazzard G; Chang B; Dirani M; Chia A; Selvaraj P; Ian K; Drobe B; Wong TY; Saw SM
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):1181-90. PubMed ID: 20926827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensation to positive as well as negative lenses can occur in chicks reared in bright UV lighting.
    Hammond DS; Wildsoet CF
    Vision Res; 2012 Aug; 67():44-50. PubMed ID: 22800617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Negative lens-induced myopia in infant monkeys: effects of high ambient lighting.
    Smith EL; Hung LF; Arumugam B; Huang J
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2959-69. PubMed ID: 23557736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transfer from blue light or green light to white light partially reverses changes in ocular refraction and anatomy of developing guinea pigs.
    Qian YF; Liu R; Dai JH; Chen MJ; Zhou XT; Chu RY
    J Vis; 2013 Sep; 13(11):. PubMed ID: 24071588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cone ratios in myopia and emmetropia: a pilot study.
    Zhou N; Atchison DA; Zele AJ; Brown B; Schmid KL
    Optom Vis Sci; 2015 Jan; 92(1):e1-5. PubMed ID: 25379632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.