These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30180147)

  • 1. The Role of Mixed Reality Simulation for Surgical Training in Spine: Phase 1 Validation.
    Coelho G; Defino HLA
    Spine (Phila Pa 1976); 2018 Nov; 43(22):1609-1616. PubMed ID: 30180147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.
    Ryu WHA; Mostafa AE; Dharampal N; Sharlin E; Kopp G; Jacobs WB; Hurlbert RJ; Chan S; Sutherland GR
    World Neurosurg; 2017 Oct; 106():870-877.e1. PubMed ID: 28712902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented reality and physical hybrid model simulation for preoperative planning of metopic craniosynostosis surgery.
    Coelho G; Rabelo NN; Vieira E; Mendes K; Zagatto G; Santos de Oliveira R; Raposo-Amaral CE; Yoshida M; de Souza MR; Fagundes CF; Teixeira MJ; Figueiredo EG
    Neurosurg Focus; 2020 Mar; 48(3):E19. PubMed ID: 32114555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Evaluation of Pediatric Mixed-Reality Model for Neuroendoscopic Surgical Training.
    Coelho G; Figueiredo EG; Rabelo NN; Rodrigues de Souza M; Fagundes CF; Teixeira MJ; Zanon N
    World Neurosurg; 2020 Jul; 139():e189-e202. PubMed ID: 32272274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of a new pediatric mixed-reality model for neurosurgical training.
    Coelho G; Figueiredo EG; Rabelo NN; Teixeira MJ; Zanon N
    J Neurosurg Pediatr; 2019 Oct; 24(4):423-432. PubMed ID: 31374540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-reality simulation for neurosurgical procedures.
    Bova FJ; Rajon DA; Friedman WA; Murad GJ; Hoh DJ; Jacob RP; Lampotang S; Lizdas DE; Lombard G; Lister JR
    Neurosurgery; 2013 Oct; 73 Suppl 1():138-45. PubMed ID: 24051877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A radiation-free mixed-reality training environment and assessment concept for C-arm-based surgery.
    Stefan P; Habert S; Winkler A; Lazarovici M; Fürmetz J; Eck U; Navab N
    Int J Comput Assist Radiol Surg; 2018 Sep; 13(9):1335-1344. PubMed ID: 29943226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual Reality and Simulation in Neurosurgical Training.
    Bernardo A
    World Neurosurg; 2017 Oct; 106():1015-1029. PubMed ID: 28985656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Low-Cost, Passive Navigation Training System for Image-Guided Spinal Intervention.
    Lorias-Espinoza D; Carranza VG; de León FC; Escamirosa FP; Martinez AM
    World Neurosurg; 2016 Nov; 95():322-328. PubMed ID: 27535635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation-based surgical education in cardiothoracic training.
    Villanueva C; Xiong J; Rajput S
    ANZ J Surg; 2020 Jun; 90(6):978-983. PubMed ID: 31828909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality-based simulators for spine surgery: a systematic review.
    Pfandler M; Lazarovici M; Stefan P; Wucherer P; Weigl M
    Spine J; 2017 Sep; 17(9):1352-1363. PubMed ID: 28571789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach.
    Schirmer CM; Elder JB; Roitberg B; Lobel DA
    Neurosurgery; 2013 Oct; 73 Suppl 1():66-73. PubMed ID: 24051886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality simulators and training in laparoscopic surgery.
    Yiannakopoulou E; Nikiteas N; Perrea D; Tsigris C
    Int J Surg; 2015 Jan; 13():60-64. PubMed ID: 25463761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.
    Walsh CM; Sherlock ME; Ling SC; Carnahan H
    Cochrane Database Syst Rev; 2012 Jun; (6):CD008237. PubMed ID: 22696375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills.
    Cagiltay NE; Ozcelik E; Sengul G; Berker M
    Surg Endosc; 2017 Nov; 31(11):4485-4495. PubMed ID: 28389794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surgical simulation: a urological perspective.
    Wignall GR; Denstedt JD; Preminger GM; Cadeddu JA; Pearle MS; Sweet RM; McDougall EM
    J Urol; 2008 May; 179(5):1690-9. PubMed ID: 18343441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low cost dural closure simulation model for tomorrow's spinal neurosurgeons.
    Ferguson D; Agyemang K; Barrett C; Mathieson C
    Br J Neurosurg; 2019 Jun; 33(3):337-340. PubMed ID: 30475077
    [No Abstract]   [Full Text] [Related]  

  • 19. Simulation-based surgical education.
    Evgeniou E; Loizou P
    ANZ J Surg; 2013 Sep; 83(9):619-23. PubMed ID: 23088646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.
    Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P
    J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.