These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30180178)

  • 21. Three-Dimensional Bioprinting Strategies for Tissue Engineering.
    Zhang YS; Oklu R; Dokmeci MR; Khademhosseini A
    Cold Spring Harb Perspect Med; 2018 Feb; 8(2):. PubMed ID: 28289247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocompatible 3D printed polymers via fused deposition modelling direct C
    Rimington RP; Capel AJ; Christie SDR; Lewis MP
    Lab Chip; 2017 Aug; 17(17):2982-2993. PubMed ID: 28762415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-printing cell-laden Matrigel-agarose constructs.
    Fan R; Piou M; Darling E; Cormier D; Sun J; Wan J
    J Biomater Appl; 2016 Nov; 31(5):684-692. PubMed ID: 27638155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-Dimensional Printing of Photoresponsive Biomaterials for Control of Bacterial Microenvironments.
    Connell JL; Ritschdorff ET; Shear JB
    Anal Chem; 2016 Dec; 88(24):12264-12271. PubMed ID: 27782402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue Engineering Applications of Three-Dimensional Bioprinting.
    Zhang X; Zhang Y
    Cell Biochem Biophys; 2015 Jul; 72(3):777-82. PubMed ID: 25663505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in bioprinting techniques: approaches, applications and future prospects.
    Li J; Chen M; Fan X; Zhou H
    J Transl Med; 2016 Sep; 14():271. PubMed ID: 27645770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer.
    Dennis SG; Trusk T; Richards D; Jia J; Tan Y; Mei Y; Fann S; Markwald R; Yost M
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26436877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.
    Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M
    J Vis Exp; 2013 Jul; (77):e50632. PubMed ID: 23892955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.
    Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE
    Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D bioprinting of structural proteins.
    Włodarczyk-Biegun MK; Del Campo A
    Biomaterials; 2017 Jul; 134():180-201. PubMed ID: 28477541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
    Choi YJ; Kim TG; Jeong J; Yi HG; Park JW; Hwang W; Cho DW
    Adv Healthc Mater; 2016 Oct; 5(20):2636-2645. PubMed ID: 27529631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct process feedback in extrusion-based 3D bioprinting.
    Armstrong AA; Norato J; Alleyne AG; Wagoner Johnson AJ
    Biofabrication; 2019 Dec; 12(1):015017. PubMed ID: 31825905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ.
    Olubamiji AD; Zhu N; Chang T; Nwankwo CK; Izadifar Z; Honaramooz A; Chen X; Eames BF
    Tissue Eng Part C Methods; 2017 Mar; 23(3):156-168. PubMed ID: 28106517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.
    Bell A; Kofron M; Nistor V
    Biofabrication; 2015 Sep; 7(3):035007. PubMed ID: 26335389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Freeform inkjet printing of cellular structures with bifurcations.
    Christensen K; Xu C; Chai W; Zhang Z; Fu J; Huang Y
    Biotechnol Bioeng; 2015 May; 112(5):1047-55. PubMed ID: 25421556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D printed lattices as an activation and expansion platform for T cell therapy.
    Delalat B; Harding F; Gundsambuu B; De-Juan-Pardo EM; Wunner FM; Wille ML; Jasieniak M; Malatesta KAL; Griesser HJ; Simula A; Hutmacher DW; Voelcker NH; Barry SC
    Biomaterials; 2017 Sep; 140():58-68. PubMed ID: 28628776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices.
    Chinga-Carrasco G
    Biomacromolecules; 2018 Mar; 19(3):701-711. PubMed ID: 29489338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting.
    Hsiao SH; Hsu SH
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-printed biological organs: medical potential and patenting opportunity.
    Yoo SS
    Expert Opin Ther Pat; 2015 May; 25(5):507-11. PubMed ID: 25711801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.