These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30180315)

  • 1. Sorption of ionizable organic chemicals to carbonaceous adsorbents: Solution pH change and contributions of different species.
    Chen Z; Ji W
    Sci Total Environ; 2019 Jan; 647():1069-1079. PubMed ID: 30180315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.
    Kah M; Sigmund G; Xiao F; Hofmann T
    Water Res; 2017 Nov; 124():673-692. PubMed ID: 28825985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-dependent sorption of sulfonamide antibiotics onto biochars: Sorption mechanisms and modeling.
    Chen Z; Xiao X; Xing B; Chen B
    Environ Pollut; 2019 May; 248():48-56. PubMed ID: 30771747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of ionizable organic compounds on HDTMA-modified loess soil.
    Chen H; Zhou W; Zhu K; Zhan H; Jiang M
    Sci Total Environ; 2004 Jun; 326(1-3):217-23. PubMed ID: 15142777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the sorption capacities and affinities of organic chemicals by XAD-7.
    Yang K; Qi L; Wei W; Wu W; Lin D
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1060-70. PubMed ID: 25561259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.
    Gulde R; Helbling DE; Scheidegger A; Fenner K
    Environ Sci Technol; 2014 Dec; 48(23):13760-8. PubMed ID: 25337862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent K
    Li H; Cao Y; Zhang D; Pan B
    Sci Total Environ; 2018 Mar; 618():269-275. PubMed ID: 29131994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Spectroscopic Evidence for Charge-Assisted Hydrogen-Bond Formation between Ionizable Organic Chemicals and Carbonaceous Materials.
    Zhang J; Zheng H; Li X; Li N; Liu Y; Li T; Wang Y; Xing B
    Environ Sci Technol; 2022 Jul; 56(13):9356-9366. PubMed ID: 35729743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment.
    Sigmund G; Arp HPH; Aumeier BM; Bucheli TD; Chefetz B; Chen W; Droge STJ; Endo S; Escher BI; Hale SE; Hofmann T; Pignatello J; Reemtsma T; Schmidt TC; Schönsee CD; Scheringer M
    Environ Sci Technol; 2022 Apr; 56(8):4702-4710. PubMed ID: 35353522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.
    Franco A; Fu W; Trapp S
    Environ Toxicol Chem; 2009 Mar; 28(3):458-64. PubMed ID: 18937533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of naphthoic acids and quinoline compounds to estuarine sediment.
    Burgos WD; Pisutpaisal N
    J Contam Hydrol; 2006 Mar; 84(3-4):107-26. PubMed ID: 16469412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive sorption experiments reveal new regression models to predict PhACs sorption on carbonaceous materials.
    Muñoz-Vega E; Horovitz M; Dönges L; Schiedek T; Schulz S; Schüth C
    J Hazard Mater; 2024 Jun; 471():134239. PubMed ID: 38640667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials.
    Sigmund G; Gharasoo M; Hüffer T; Hofmann T
    Environ Sci Technol; 2020 Apr; 54(7):4583-4591. PubMed ID: 32124609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities.
    Armitage JM; Erickson RJ; Luckenbach T; Ng CA; Prosser RS; Arnot JA; Schirmer K; Nichols JW
    Environ Toxicol Chem; 2017 Apr; 36(4):882-897. PubMed ID: 27992066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using surfactant-modified clays to determine sorption mechanisms for a representative organic base, quinoline.
    Bonczek JL; Nkedi-Kizza P
    J Environ Qual; 2007; 36(6):1803-10. PubMed ID: 17965383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application.
    Venkatesan AK; Halden RU
    Sci Total Environ; 2016 Apr; 550():736-741. PubMed ID: 26849337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of adsorption nonlinearity on the pH-adsorption profile of ionizable organic compounds.
    Xiao F; Pignatello JJ
    Langmuir; 2014 Mar; 30(8):1994-2001. PubMed ID: 24512326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations.
    Uchimiya M; Klasson KT; Wartelle LH; Lima IM
    Chemosphere; 2011 Mar; 82(10):1431-7. PubMed ID: 21147495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental Sorption Behavior of Ionic and Ionizable Organic Chemicals.
    Henneberger L; Goss KU
    Rev Environ Contam Toxicol; 2021; 253():43-64. PubMed ID: 31748892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Apparent Volume of Distribution Predicts Bioaccumulation of Ionizable Organic Chemicals in Zebrafish Embryos.
    Zhang L; Brooks BW; Liu F; Zhou Z; Li H; You J
    Environ Sci Technol; 2022 Aug; 56(16):11547-11558. PubMed ID: 35896009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.