These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 30180363)
1. Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes. Colborne SF; Maguire TJ; Mayer B; Nightingale M; Enns GE; Fisk AT; Drouillard KG; Mohamed MN; Weisener CG; Wellen C; Mundle SOC Sci Total Environ; 2019 Jan; 647():1594-1603. PubMed ID: 30180363 [TBL] [Abstract][Full Text] [Related]
2. Distinguishing point and non-point sources of dissolved nutrients, metals, and legacy contaminants in the Detroit River. Maguire TJ; Spencer C; Grgicak-Mannion A; Drouillard K; Mayer B; Mundle SOC Sci Total Environ; 2019 Sep; 681():1-8. PubMed ID: 31102810 [TBL] [Abstract][Full Text] [Related]
3. Hexabromocyclododecane Flame Retardant Isomers in Sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America. Letcher RJ; Lu Z; Chu S; Haffner GD; Drouillard K; Marvin CH; Ciborowski JJ Bull Environ Contam Toxicol; 2015 Jul; 95(1):31-6. PubMed ID: 25673522 [TBL] [Abstract][Full Text] [Related]
4. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie. Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725 [TBL] [Abstract][Full Text] [Related]
5. Internal loading of phosphate in Lake Erie Central Basin. Paytan A; Roberts K; Watson S; Peek S; Chuang PC; Defforey D; Kendall C Sci Total Environ; 2017 Feb; 579():1356-1365. PubMed ID: 27923579 [TBL] [Abstract][Full Text] [Related]
6. A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Gooddy DC; Lapworth DJ; Bennett SA; Heaton THE; Williams PJ; Surridge BWJ Water Res; 2016 Jan; 88():623-633. PubMed ID: 26562799 [TBL] [Abstract][Full Text] [Related]
7. Legacy of legacies: Chlorinated naphthalenes in Lake Trout, Walleye, Herring Gull eggs and sediments from the Laurentian Great Lakes indicate possible resuspension during contaminated sediment remediation. McGoldrick DJ; Pelletier M; de Solla SR; Marvin CH; Martin PA Sci Total Environ; 2018 Sep; 634():1424-1434. PubMed ID: 29710642 [TBL] [Abstract][Full Text] [Related]
8. Characterization of sedimentary phosphorus in Lake Erie and on-site quantification of internal phosphorus loading. Wang YT; Zhang TQ; Zhao YC; Ciborowski JJH; Zhao YM; O'Halloran IP; Qi ZM; Tan CS Water Res; 2021 Jan; 188():116525. PubMed ID: 33091803 [TBL] [Abstract][Full Text] [Related]
9. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Jarvie HP; Neal C; Withers PJ Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299 [TBL] [Abstract][Full Text] [Related]
10. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Emelko MB; Stone M; Silins U; Allin D; Collins AL; Williams CH; Martens AM; Bladon KD Glob Chang Biol; 2016 Mar; 22(3):1168-84. PubMed ID: 26313547 [TBL] [Abstract][Full Text] [Related]
11. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary. Brooker MR; Longnecker K; Kujawinski EB; Evert MH; Mouser PJ Environ Sci Technol; 2018 Jun; 52(12):6771-6779. PubMed ID: 29779381 [TBL] [Abstract][Full Text] [Related]
12. Tracing the sources and cycling of phosphorus in river sediments using oxygen isotopes: Methodological adaptations and first results from a case study in France. Pistocchi C; Tamburini F; Gruau G; Ferhi A; Trevisan D; Dorioz JM Water Res; 2017 Mar; 111():346-356. PubMed ID: 28107748 [TBL] [Abstract][Full Text] [Related]
13. Watershed- and reach-scale drivers of phosphorus retention and release by streambed sediment in a western Lake Erie watershed during summer. Kreiling RM; Perner PM; Breckner KJ; Williamson TN; Bartsch LA; Hood JM; Manning NF; Johnson LT Sci Total Environ; 2023 Mar; 863():160804. PubMed ID: 36567200 [TBL] [Abstract][Full Text] [Related]
14. Spatio-temporal connectivity of the aquatic microbiome associated with cyanobacterial blooms along a Great Lake riverine-lacustrine continuum. Crevecoeur S; Edge TA; Watson LC; Watson SB; Greer CW; Ciborowski JJH; Diep N; Dove A; Drouillard KG; Frenken T; McKay RM; Zastepa A; Comte J Front Microbiol; 2023; 14():1073753. PubMed ID: 36846788 [TBL] [Abstract][Full Text] [Related]
15. Effect of temperature on phosphorus flux from anoxic western Lake Erie sediments. Gibbons KJ; Bridgeman TB Water Res; 2020 Sep; 182():116022. PubMed ID: 32623199 [TBL] [Abstract][Full Text] [Related]
16. Nutrient sources and composition of recent algal blooms and eutrophication in the northern Jiulong River, Southeast China. Li Y; Cao W; Su C; Hong H Mar Pollut Bull; 2011; 63(5-12):249-54. PubMed ID: 21377176 [TBL] [Abstract][Full Text] [Related]
17. Long-term and seasonal trend decomposition of Maumee River nutrient inputs to western Lake Erie. Stow CA; Cha Y; Johnson LT; Confesor R; Richards RP Environ Sci Technol; 2015 Mar; 49(6):3392-400. PubMed ID: 25679045 [TBL] [Abstract][Full Text] [Related]
18. River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms. King WM; Curless SE; Hood JM Water Res; 2022 Aug; 222():118845. PubMed ID: 35868100 [TBL] [Abstract][Full Text] [Related]
19. Comparison of mercury speciation and distribution in the water column and sediments between the algal type zone and the macrophytic type zone in a hypereutrophic lake (Dianchi Lake) in Southwestern China. Wang S; Zhang M; Li B; Xing D; Wang X; Wei C; Jia Y Sci Total Environ; 2012 Feb; 417-418():204-13. PubMed ID: 22265601 [TBL] [Abstract][Full Text] [Related]
20. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Paerl H Adv Exp Med Biol; 2008; 619():217-37. PubMed ID: 18461771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]