These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30180579)

  • 1. Reactivity of Monoterpene Criegee Intermediates at Gas-Liquid Interfaces.
    Qiu J; Ishizuka S; Tonokura K; Colussi AJ; Enami S
    J Phys Chem A; 2018 Oct; 122(39):7910-7917. PubMed ID: 30180579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of Criegee Intermediates with Alcohols at Air-Aqueous Interfaces.
    Enami S; Colussi AJ
    J Phys Chem A; 2017 Jul; 121(27):5175-5182. PubMed ID: 28635281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid.
    Enami S; Colussi AJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17044-17051. PubMed ID: 28643829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial vs Bulk Ozonolysis of Nerolidol.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    Environ Sci Technol; 2019 May; 53(10):5750-5757. PubMed ID: 31017766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of Criegee Intermediates with Benzoic Acid at the Gas/Liquid Interface.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    J Phys Chem A; 2018 Aug; 122(30):6303-6310. PubMed ID: 29989413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide.
    Ahrens J; Carlsson PT; Hertl N; Olzmann M; Pfeifle M; Wolf JL; Zeuch T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):715-9. PubMed ID: 24402798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pH on Interfacial Ozonolysis of α-Terpineol.
    Qiu J; Ishizuka S; Tonokura K; Sato K; Inomata S; Enami S
    J Phys Chem A; 2019 Aug; 123(32):7148-7155. PubMed ID: 31329444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection.
    Giorio C; Campbell SJ; Bruschi M; Tampieri F; Barbon A; Toffoletti A; Tapparo A; Paijens C; Wedlake AJ; Grice P; Howe DJ; Kalberer M
    J Am Chem Soc; 2017 Mar; 139(11):3999-4008. PubMed ID: 28201872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organosulfate formation in biogenic secondary organic aerosol.
    Surratt JD; Gómez-González Y; Chan AW; Vermeylen R; Shahgholi M; Kleindienst TE; Edney EO; Offenberg JH; Lewandowski M; Jaoui M; Maenhaut W; Claeys M; Flagan RC; Seinfeld JH
    J Phys Chem A; 2008 Sep; 112(36):8345-78. PubMed ID: 18710205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Criegee Chemistry on Aqueous Organic Surfaces.
    Enami S; Colussi AJ
    J Phys Chem Lett; 2017 Apr; 8(7):1615-1623. PubMed ID: 28319398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formed via ozonolysis of α-pinene.
    Bagchi A; Yu Y; Huang JH; Tsai CC; Hu WP; Wang CC
    Phys Chem Chem Phys; 2020 Mar; 22(12):6528-6537. PubMed ID: 32091071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OH-Radical Oxidation of Surface-Active cis-Pinonic Acid at the Air-Water Interface.
    Enami S; Sakamoto Y
    J Phys Chem A; 2016 May; 120(20):3578-87. PubMed ID: 27098046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of Monoterpene-Derived α-Hydroxyalkyl-Hydroperoxides in Aqueous Organic Media: Relevance to the Fate of Hydroperoxides in Aerosol Particle Phases.
    Qiu J; Liang Z; Tonokura K; Colussi AJ; Enami S
    Environ Sci Technol; 2020 Apr; 54(7):3890-3899. PubMed ID: 32131591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoterpene and Sesquiterpene α-Hydroxy Organosulfates: Synthesis, MS/MS Characteristics, and Ambient Presence.
    Wang Y; Ma Y; Li X; Kuang BY; Huang C; Tong R; Yu JZ
    Environ Sci Technol; 2019 Nov; 53(21):12278-12290. PubMed ID: 31584263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous-phase fates of α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with alcohols.
    Hu M; Qiu J; Tonokura K; Enami S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4605-4614. PubMed ID: 33620039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface.
    Ma X; Zhao X; Huang Z; Wang J; Lv G; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 Mar; 707():135804. PubMed ID: 31862431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criegee Intermediates React with Levoglucosan on Water.
    Enami S; Hoffmann MR; Colussi AJ
    J Phys Chem Lett; 2017 Aug; 8(16):3888-3894. PubMed ID: 28767252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry Deposition of Biogenic Terpenes via Cationic Oligomerization on Environmental Aqueous Surfaces.
    Enami S; Hoffmann MR; Colussi AJ
    J Phys Chem Lett; 2012 Nov; 3(21):3102-8. PubMed ID: 26296013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.
    Aljawhary D; Zhao R; Lee AK; Wang C; Abbatt JP
    J Phys Chem A; 2016 Mar; 120(9):1395-407. PubMed ID: 26299576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiological Tests of Natural Limonene and the Compounds Obtained after Isomerization of Limonene in the Presence of Ti-SBA-15 Catalyst-α-Terpinene, γ-Terpinene, Terpinolene, and p-Cymene.
    Wróblewska A; Retajczyk M; Kądziołka D; Markowska-Szczupak A
    J Cosmet Sci; 2019; 70(3):137-147. PubMed ID: 31398102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.