These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 30180629)

  • 1. Quantifying entropy using recurrence matrix microstates.
    Corso G; Prado TL; Lima GZDS; Kurths J; Lopes SR
    Chaos; 2018 Aug; 28(8):083108. PubMed ID: 30180629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum entropy principle in recurrence plot analysis on stochastic and chaotic systems.
    Prado TL; Corso G; Dos Santos Lima GZ; Budzinski RC; Boaretto BRR; Ferrari FAS; Macau EEN; Lopes SR
    Chaos; 2020 Apr; 30(4):043123. PubMed ID: 32357677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrence microstates for machine learning classification.
    Spezzatto GS; Flauzino JVV; Corso G; Boaretto BRR; Macau EEN; Prado TL; Lopes SR
    Chaos; 2024 Jul; 34(7):. PubMed ID: 39028905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy of weighted recurrence plots.
    Eroglu D; Peron TK; Marwan N; Rodrigues FA; Costa Lda F; Sebek M; Kiss IZ; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042919. PubMed ID: 25375579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the entropy of a hidden Markov process.
    Jacquet P; Seroussi G; Szpankowski W
    Theor Comput Sci; 2008 May; 395(2-3):203-219. PubMed ID: 19169438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the detection of nonstationary signals by using recurrence analysis.
    Prado TL; Dos Santos Lima GZ; Lobão-Soares B; do Nascimento GC; Corso G; Fontenele-Araujo J; Kurths J; Lopes SR
    Chaos; 2018 Aug; 28(8):085703. PubMed ID: 30180649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized entropy production phenomena: a master-equation approach.
    Casas GA; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012114. PubMed ID: 24580179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hurst entropy: A method to determine predictability in a binary series based on a fractal-related process.
    Ferraz MSA; Kihara AH
    Phys Rev E; 2019 Jun; 99(6-1):062115. PubMed ID: 31330637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the reality of the residual entropies of glasses and disordered crystals: counting microstates, calculating fluctuations, and comparing averages.
    Goldstein M
    J Chem Phys; 2011 Mar; 134(12):124502. PubMed ID: 21456671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods.
    Zou Y; Donner RV; Donges JF; Marwan N; Kurths J
    Chaos; 2010 Dec; 20(4):043130. PubMed ID: 21198100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Temporal Correlations in Time Series Using Permutation Entropy, Ordinal Probabilities and Machine Learning.
    Boaretto BRR; Budzinski RC; Rossi KL; Prado TL; Lopes SR; Masoller C
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stickiness and recurrence plots: An entropy-based approach.
    Sales MR; Mugnaine M; Szezech JD; Viana RL; Caldas IL; Marwan N; Kurths J
    Chaos; 2023 Mar; 33(3):033140. PubMed ID: 37003817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing chaos from noise by scale-dependent Lyapunov exponent.
    Gao JB; Hu J; Tung WW; Cao YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066204. PubMed ID: 17280136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing weak chaos using time series of Lyapunov exponents.
    da Silva RM; Manchein C; Beims MW; Altmann EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062907. PubMed ID: 26172772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of scale invariance in physiological signals by means of balanced estimation of diffusion entropy.
    Zhang W; Qiu L; Xiao Q; Yang H; Zhang Q; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056107. PubMed ID: 23214843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo method: application to peptides.
    Cheluvaraja S; Meirovitch H
    J Chem Phys; 2005 Feb; 122(5):54903. PubMed ID: 15740349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Coupling in Short Physiological Series by a Joint Distribution Entropy Method.
    Li P; Li K; Liu C; Zheng D; Li ZM; Liu C
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2231-2242. PubMed ID: 26760967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary and dynamical properties of information entropies in nonextensive systems.
    Hasegawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031133. PubMed ID: 18517355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient time-series detection of the strong stochasticity threshold in Fermi-Pasta-Ulam oscillator lattices.
    Romero-Bastida M; Reyes-Martínez AY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016213. PubMed ID: 21405766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the reality of residual entropies of glasses and disordered crystals.
    Goldstein M
    J Chem Phys; 2008 Apr; 128(15):154510. PubMed ID: 18433238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.