These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30180807)
1. Different sulfonylureas induce the apoptosis of proximal tubular epithelial cell differently via closing K Zhang R; Zhou X; Shen X; Xie T; Xu C; Zou Z; Dong J; Liao L Mol Med; 2018 Sep; 24(1):47. PubMed ID: 30180807 [TBL] [Abstract][Full Text] [Related]
2. Comparative Effects of Three Sulfonylureas (Glibenclamide, Glimepiride, and Gliclazide) on Proliferation and Migration of Vascular Smooth Muscle Cells. Zhang R; Zou Z; Zhou X; Shen X; Fan Z; Xie T; Xu C; Liao L; Dong J Cell Physiol Biochem; 2019; 52(1):16-26. PubMed ID: 30790502 [TBL] [Abstract][Full Text] [Related]
3. Effects of sulfonylureas on K(ATP) channel-dependent vasodilation. Cyrino FZ; Bottino DA; Coelho FC; Ravel D; Bouskela E J Diabetes Complications; 2003; 17(2 Suppl):6-10. PubMed ID: 12623162 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of sulphonylureas on the vasodilatory response evoked by K(ATP) channel openers. Ravel D; Levens N; Félétou M; Néliat G; Auclair J; Bouskela E Fundam Clin Pharmacol; 2003 Feb; 17(1):61-9. PubMed ID: 12588631 [TBL] [Abstract][Full Text] [Related]
5. Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic beta-cell line, MIN6. Sawada F; Inoguchi T; Tsubouchi H; Sasaki S; Fujii M; Maeda Y; Morinaga H; Nomura M; Kobayashi K; Takayanagi R Metabolism; 2008 Aug; 57(8):1038-45. PubMed ID: 18640379 [TBL] [Abstract][Full Text] [Related]
6. Cardiovascular effects of conventional sulfonylureas and glimepiride. Geisen K; Végh A; Krause E; Papp JG Horm Metab Res; 1996 Sep; 28(9):496-507. PubMed ID: 8911987 [TBL] [Abstract][Full Text] [Related]
7. The role of ATP-sensitive potassium channel blockers in ischemia-reperfusion-induced renal injury versus their effects on cardiac ischemia reperfusion in rats. Tawfik MK; Abo-Elmatty DM; Ahmed AA Eur Rev Med Pharmacol Sci; 2009; 13(2):81-93. PubMed ID: 19499842 [TBL] [Abstract][Full Text] [Related]
8. Microvascular permeability with sulfonylureas in normal and diabetic hamsters. Bouskela E; Cyrino FZ; Conde CM; Garcia AA Metabolism; 1997 Dec; 46(12 Suppl 1):26-30. PubMed ID: 9439555 [TBL] [Abstract][Full Text] [Related]
9. Gene networks modified by sulphonylureas in beta cells: a pathway-based analysis of insulin secretion and cell death. Magnusson NE; Dyrskjøt L; Grimm D; Wehland M; Pietsch J; Rungby J Basic Clin Pharmacol Toxicol; 2012 Oct; 111(4):254-61. PubMed ID: 22642398 [TBL] [Abstract][Full Text] [Related]
10. Binding of sulphonylureas to plasma proteins - A KATP channel perspective. Proks P; Kramer H; Haythorne E; Ashcroft FM PLoS One; 2018; 13(5):e0197634. PubMed ID: 29772022 [TBL] [Abstract][Full Text] [Related]
11. Protective effects of gliclazide on high glucose and AGEs-induced damage of glomerular mesangial cells and renal tubular epithelial cells via inhibiting RAGE-p22phox-NF-kB pathway. Yang PY; Li PC; Feng B Eur Rev Med Pharmacol Sci; 2019 Oct; 23(20):9099-9107. PubMed ID: 31696501 [TBL] [Abstract][Full Text] [Related]
12. Effects of glibenclamide, glimepiride, and gliclazide on ischemic preconditioning in rat heart. Wu GT; Wang L; Li J; Zhu WZ Chin Med Sci J; 2007 Sep; 22(3):162-8. PubMed ID: 17966164 [TBL] [Abstract][Full Text] [Related]
13. Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans. Bijlstra PJ; Lutterman JA; Russel FG; Thien T; Smits P Diabetologia; 1996 Sep; 39(9):1083-90. PubMed ID: 8877293 [TBL] [Abstract][Full Text] [Related]
14. Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury. Yilmaz TU; Yazihan N; Dalgic A; Kaya EE; Salman B; Kocak M; Akcil E Indian J Med Res; 2015 Jun; 141(6):807-15. PubMed ID: 26205024 [TBL] [Abstract][Full Text] [Related]
15. Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A. Lang VY; Fatehi M; Light PE Pharmacogenet Genomics; 2012 Mar; 22(3):206-14. PubMed ID: 22209866 [TBL] [Abstract][Full Text] [Related]
16. Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: A comparison with sulfonylureas and repaglinide. Hu S; Wang S; Fanelli B; Bell PA; Dunning BE; Geisse S; Schmitz R; Boettcher BR J Pharmacol Exp Ther; 2000 May; 293(2):444-52. PubMed ID: 10773014 [TBL] [Abstract][Full Text] [Related]
17. A potential role of calpains in sulfonylureas (SUs) -mediated death of human pancreatic cancer cells (1.2B4). Szymczak-Pajor I; Fleszar K; Kasznicki J; Gralewska P; Śliwińska A Toxicol In Vitro; 2021 Jun; 73():105128. PubMed ID: 33652124 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at beta-cells. Kramer W; Müller G; Geisen K Horm Metab Res; 1996 Sep; 28(9):464-8. PubMed ID: 8911984 [TBL] [Abstract][Full Text] [Related]
19. [Effects of gliclazide and glibenclamide on platelet function, fibrinolysis and metabolic control in diabetic patients with retinopathy (author's transl)]. Chan TK; Chan V; Teng CS; Yeung RT Sem Hop; 1982 May; 58(19):1197-200. PubMed ID: 6285503 [TBL] [Abstract][Full Text] [Related]