BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 30180969)

  • 1. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress.
    Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y
    Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (Triticum aestivum L.).
    Liu X; Lin Y; Liu D; Wang C; Zhao Z; Cui X; Liu Y; Yang Y
    Sci Rep; 2017 May; 7(1):1620. PubMed ID: 28487539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity.
    Jiang HX; Yang LT; Qi YP; Lu YB; Huang ZR; Chen LS
    BMC Genomics; 2015 Nov; 16():949. PubMed ID: 26573913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots.
    Ma JF; Shen R; Nagao S; Tanimoto E
    Plant Cell Physiol; 2004 May; 45(5):583-9. PubMed ID: 15169940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress.
    Zakir Hossain AK; Koyama H; Hara T
    J Plant Physiol; 2006 Jan; 163(1):39-47. PubMed ID: 16360802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants.
    Liu W; Xu F; Lv T; Zhou W; Chen Y; Jin C; Lu L; Lin X
    Sci Total Environ; 2018 Jun; 627():462-469. PubMed ID: 29426169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress.
    Ge P; Hao P; Cao M; Guo G; Lv D; Subburaj S; Li X; Yan X; Xiao J; Ma W; Yan Y
    Proteomics; 2013 Oct; 13(20):3046-58. PubMed ID: 23929510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress.
    Jiang Q; Li X; Niu F; Sun X; Hu Z; Zhang H
    Proteomics; 2017 Apr; 17(8):. PubMed ID: 28191739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat.
    He X; Fang J; Li J; Qu B; Ren Y; Ma W; Zhao X; Li B; Wang D; Li Z; Tong Y
    Plant J; 2014 Mar; 77(6):931-43. PubMed ID: 24467344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat.
    Sun C; Liu L; Yu Y; Liu W; Lu L; Jin C; Lin X
    J Integr Plant Biol; 2015 Jun; 57(6):550-61. PubMed ID: 25319364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum Induces Distinct Changes in the Metabolism of Reactive Oxygen and Nitrogen Species in the Roots of Two Wheat Genotypes with Different Aluminum Resistance.
    Sun C; Liu L; Zhou W; Lu L; Jin C; Lin X
    J Agric Food Chem; 2017 Nov; 65(43):9419-9427. PubMed ID: 29016127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat.
    Yu Y; Jin C; Sun C; Wang J; Ye Y; Lu L; Lin X
    J Hazard Mater; 2015 Dec; 299():280-8. PubMed ID: 26142157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress.
    Kang G; Li G; Wang L; Wei L; Yang Y; Wang P; Yang Y; Wang Y; Feng W; Wang C; Guo T
    J Proteome Res; 2015 Jan; 14(1):249-67. PubMed ID: 25330896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.
    Yu Y; Jin C; Sun C; Wang J; Ye Y; Zhou W; Lu L; Lin X
    Sci Rep; 2016 Jan; 6():18888. PubMed ID: 26744061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots.
    Sun C; Lu L; Yu Y; Liu L; Hu Y; Ye Y; Jin C; Lin X
    J Exp Bot; 2016 Feb; 67(3):979-89. PubMed ID: 26663393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of wheat root exudates under aluminum stress.
    Wang P; Bi S; Wang S; Ding Q
    J Agric Food Chem; 2006 Dec; 54(26):10040-6. PubMed ID: 17177539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cDNA clones encoding 1,3-beta-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots.
    Cruz-Ortega R; Cushman JC; Ownby JD
    Plant Physiol; 1997 Aug; 114(4):1453-60. PubMed ID: 9276954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.
    Chen D; Richardson T; Chai S; Lynne McIntyre C; Rae AL; Xue GP
    Plant Cell Physiol; 2016 Oct; 57(10):2076-2090. PubMed ID: 27440550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat.
    He HY; He LF; Gu MH; Li XF
    Plant Sci; 2012 Feb; 183():123-30. PubMed ID: 22195585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional groups on wheat (Triticum aestivum) root surface affect aluminium transverse accumulation.
    Li Z; Huang F; Shen Y; Ling S
    Ecotoxicol Environ Saf; 2022 Nov; 246():114178. PubMed ID: 36244168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.