BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30180995)

  • 1. Air-breathing and excretory nitrogen metabolism in fishes.
    Ip YK; Chew SF
    Acta Histochem; 2018 Oct; 120(7):680-690. PubMed ID: 30180995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.
    Chew SF; Ip YK
    J Fish Biol; 2014 Mar; 84(3):603-38. PubMed ID: 24438022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Five tropical air-breathing fishes, six different strategies to defend against ammonia toxicity on land.
    Ip YK; Chew SF; Randall DJ
    Physiol Biochem Zool; 2004; 77(5):768-82. PubMed ID: 15547795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active ammonia transport and excretory nitrogen metabolism in the climbing perch, Anabas testudineus, during 4 days of emersion or 10 minutes of forced exercise on land.
    Tay YL; Loong AM; Hiong KC; Lee SJ; Tng YY; Wee NL; Lee SM; Wong WP; Chew SF; Wilson JM; Ip YK
    J Exp Biol; 2006 Nov; 209(Pt 22):4475-89. PubMed ID: 17079718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread use of emersion and cutaneous ammonia excretion in Aplocheiloid killifishes.
    Livingston MD; Bhargav VV; Turko AJ; Wilson JM; Wright PA
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30111602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.
    Ip YK; Chew SF; Wilson JM; Randall DJ
    J Comp Physiol B; 2004 Oct; 174(7):565-75. PubMed ID: 15316728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Chinese soft-shelled turtle, Pelodiscus sinensis, decreases nitrogenous excretion, reduces urea synthesis and suppresses ammonia production during emersion.
    Ip YK; Lee SM; Wong WP; Chew SF
    J Exp Biol; 2013 May; 216(Pt 9):1650-7. PubMed ID: 23348951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theme and variations: amphibious air-breathing intertidal fishes.
    Martin KL
    J Fish Biol; 2014 Mar; 84(3):577-602. PubMed ID: 24344914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition?
    Graham JB; Lee HJ
    Physiol Biochem Zool; 2004; 77(5):720-31. PubMed ID: 15547791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gills and air-breathing organ in O
    Pelster B; Wood CM; Braz-Mota S; Val AL
    J Comp Physiol B; 2020 Sep; 190(5):569-583. PubMed ID: 32529591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammonia as a respiratory gas in water and air-breathing fishes.
    Randall DJ; Ip YK
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):216-25. PubMed ID: 16731054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and biochemical strategies for withstanding emersion in two galaxiid fishes.
    Urbina MA; Walsh PJ; Hill JV; Glover CN
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():49-58. PubMed ID: 25026541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt and water relations, and nitrogen excretion, in the amphibious african freshwater crab potamonautes warreni in water and in air.
    Morris S; w
    J Exp Biol; 1998 Mar; 201 (Pt 6)():883-93. PubMed ID: 9464969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonia and urea transporters in gills of fish and aquatic crustaceans.
    Weihrauch D; Wilkie MP; Walsh PJ
    J Exp Biol; 2009 Jun; 212(Pt 11):1716-30. PubMed ID: 19448081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cutaneous respiration and osmoregulation in amphibious fishes.
    Wright PA
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar; 253():110866. PubMed ID: 33301892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cypermethrin induced alterations in nitrogen metabolism in freshwater fishes.
    Kumar A; Sharma B; Pandey RS
    Chemosphere; 2011 Apr; 83(4):492-501. PubMed ID: 21227480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.
    Brauner CJ; Matey V; Wilson JM; Bernier NJ; Val AL
    J Exp Biol; 2004 Apr; 207(Pt 9):1433-8. PubMed ID: 15037637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional morphology of the respiratory organs of the air-breathing fish with particular emphasis on the African catfishes, Clarias mossambicus and C. gariepinus.
    Maina JN
    Acta Histochem; 2018 Oct; 120(7):613-622. PubMed ID: 30195501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ureotelism is inducible in the neotropical freshwater Hoplias malabaricus (Teleostei, Erythrinidae).
    Moraes G; Polez VL
    Braz J Biol; 2004 May; 64(2):265-71. PubMed ID: 15462300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphibious fishes: evolution and phenotypic plasticity.
    Wright PA; Turko AJ
    J Exp Biol; 2016 Aug; 219(Pt 15):2245-59. PubMed ID: 27489213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.