BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 30181260)

  • 21. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.
    Rebsamen M; Pochini L; Stasyk T; de Araújo ME; Galluccio M; Kandasamy RK; Snijder B; Fauster A; Rudashevskaya EL; Bruckner M; Scorzoni S; Filipek PA; Huber KV; Bigenzahn JW; Heinz LX; Kraft C; Bennett KL; Indiveri C; Huber LA; Superti-Furga G
    Nature; 2015 Mar; 519(7544):477-81. PubMed ID: 25561175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disruption of the Rag-Ragulator Complex by c17orf59 Inhibits mTORC1.
    Schweitzer LD; Comb WC; Bar-Peled L; Sabatini DM
    Cell Rep; 2015 Sep; 12(9):1445-55. PubMed ID: 26299971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
    Lawrence RE; Fromm SA; Fu Y; Yokom AL; Kim DJ; Thelen AM; Young LN; Lim CY; Samelson AJ; Hurley JH; Zoncu R
    Science; 2019 Nov; 366(6468):971-977. PubMed ID: 31672913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic dissection of Ragulator structure and function in amino acid-dependent regulation of mTORC1.
    Nada S; Okada M
    J Biochem; 2020 Dec; 168(6):621-632. PubMed ID: 32653916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids.
    Sancak Y; Bar-Peled L; Zoncu R; Markhard AL; Nada S; Sabatini DM
    Cell; 2010 Apr; 141(2):290-303. PubMed ID: 20381137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis for the docking of mTORC1 on the lysosomal surface.
    Rogala KB; Gu X; Kedir JF; Abu-Remaileh M; Bianchi LF; Bottino AMS; Dueholm R; Niehaus A; Overwijn D; Fils AP; Zhou SX; Leary D; Laqtom NN; Brignole EJ; Sabatini DM
    Science; 2019 Oct; 366(6464):468-475. PubMed ID: 31601708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue-specific expression differences in Ras-related GTP-binding proteins in male rats.
    Kincheloe GN; Roberson PA; Jefferson LS; Kimball SR
    Physiol Rep; 2024 Feb; 12(3):e15928. PubMed ID: 38296461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes.
    Ögmundsdóttir MH; Heublein S; Kazi S; Reynolds B; Visvalingam SM; Shaw MK; Goberdhan DC
    PLoS One; 2012; 7(5):e36616. PubMed ID: 22574197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Architecture of human Rag GTPase heterodimers and their complex with mTORC1.
    Anandapadamanaban M; Masson GR; Perisic O; Berndt A; Kaufman J; Johnson CM; Santhanam B; Rogala KB; Sabatini DM; Williams RL
    Science; 2019 Oct; 366(6462):203-210. PubMed ID: 31601764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.
    Shen K; Valenstein ML; Gu X; Sabatini DM
    J Biol Chem; 2019 Feb; 294(8):2970-2975. PubMed ID: 30651352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and biochemical characterization of the Rag GTPase heterodimer.
    Doxsey DD; Shen K
    Methods Enzymol; 2022; 675():131-158. PubMed ID: 36220268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2.
    Péli-Gulli MP; Sardu A; Panchaud N; Raucci S; De Virgilio C
    Cell Rep; 2015 Oct; 13(1):1-7. PubMed ID: 26387955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamine and asparagine activate mTORC1 independently of Rag GTPases.
    Meng D; Yang Q; Wang H; Melick CH; Navlani R; Frank AR; Jewell JL
    J Biol Chem; 2020 Mar; 295(10):2890-2899. PubMed ID: 32019866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Rag-Ragulator Complex Regulates Lysosome Function and Phagocytic Flux in Microglia.
    Shen K; Sidik H; Talbot WS
    Cell Rep; 2016 Jan; 14(3):547-559. PubMed ID: 26774477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The yoga of Rag GTPases: Dynamic structural poses confer amino acid sensing by mTORC1.
    Fingar DC
    J Biol Chem; 2021 Sep; 297(3):101103. PubMed ID: 34419448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Rag GTPase-Ragulator complex attenuates TOR complex 1 signaling in fission yeast.
    Fukuda T; Shiozaki K
    Autophagy; 2018; 14(6):1105-1106. PubMed ID: 29799770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids.
    Gollwitzer P; Grützmacher N; Wilhelm S; Kümmel D; Demetriades C
    Nat Cell Biol; 2022 Sep; 24(9):1394-1406. PubMed ID: 36097072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid-dependent NPRL2 interaction with Raptor determines mTOR Complex 1 activation.
    Kwak SS; Kang KH; Kim S; Lee S; Lee JH; Kim JW; Byun B; Meadows GG; Joe CO
    Cell Signal; 2016 Feb; 28(2):32-41. PubMed ID: 26582740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
    Shen K; Huang RK; Brignole EJ; Condon KJ; Valenstein ML; Chantranupong L; Bomaliyamu A; Choe A; Hong C; Yu Z; Sabatini DM
    Nature; 2018 Apr; 556(7699):64-69. PubMed ID: 29590090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The amino acid transporter SLC38A9 regulates MTORC1 and autophagy.
    Jin M; Klionsky DJ
    Autophagy; 2015; 11(10):1709-10. PubMed ID: 26506891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.