These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30181267)

  • 61. Bringing value to the chemical industry from capture, storage and use of CO
    Aldaco R; Butnar I; Margallo M; Laso J; Rumayor M; Dominguez-Ramos A; Irabien A; Dodds PE
    Sci Total Environ; 2019 May; 663():738-753. PubMed ID: 30738256
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatial stochastic modeling of sedimentary formations to assess CO2 storage potential.
    Popova OH; Small MJ; McCoy ST; Thomas AC; Rose S; Karimi B; Carter K; Goodman A
    Environ Sci Technol; 2014 Jun; 48(11):6247-55. PubMed ID: 24824160
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cutting the cost of carbon capture: a case for carbon capture and utilization.
    Joos L; Huck JM; Van Speybroeck V; Smit B
    Faraday Discuss; 2016 Oct; 192():391-414. PubMed ID: 27486680
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.
    Hills T; Leeson D; Florin N; Fennell P
    Environ Sci Technol; 2016 Jan; 50(1):368-77. PubMed ID: 26630247
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.
    Blanco ST; Rivas C; Bravo R; Fernández J; Artal M; Velasco I
    Environ Sci Technol; 2014 Sep; 48(18):10984-92. PubMed ID: 25140928
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.
    Gniese C; Bombach P; Rakoczy J; Hoth N; Schlömann M; Richnow HH; Krüger M
    Adv Biochem Eng Biotechnol; 2014; 142():95-121. PubMed ID: 24311044
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preparing to capture carbon.
    Schrag DP
    Science; 2007 Feb; 315(5813):812-3. PubMed ID: 17289991
    [TBL] [Abstract][Full Text] [Related]  

  • 69. "Not in (or under) my backyard": Geographic proximity and public acceptance of carbon capture and storage facilities.
    Krause RM; Carley SR; Warren DC; Rupp JA; Graham JD
    Risk Anal; 2014 Mar; 34(3):529-40. PubMed ID: 24117789
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Post-combustion carbon dioxide capture cost reduction to 2030 and beyond.
    Adderley B; Carey J; Gibbins J; Lucquiaud M; Smith R
    Faraday Discuss; 2016 Oct; 192():27-35. PubMed ID: 27476535
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Managing uncertainties: the making of the IPCC's special report on carbon dioxide capture and storage.
    Narita D
    Public Underst Sci; 2012 Jan; 21(1):84-100. PubMed ID: 22530489
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review.
    Creamer AE; Gao B
    Environ Sci Technol; 2016 Jul; 50(14):7276-89. PubMed ID: 27257991
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations.
    Pikaar I; de Vrieze J; Rabaey K; Herrero M; Smith P; Verstraete W
    Sci Total Environ; 2018 Dec; 644():1525-1530. PubMed ID: 30743865
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Air quality, health, and climate implications of China's synthetic natural gas development.
    Qin Y; Wagner F; Scovronick N; Peng W; Yang J; Zhu T; Smith KR; Mauzerall DL
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4887-4892. PubMed ID: 28438993
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Making carbon sequestration a paying proposition.
    Han FX; Lindner JS; Wang C
    Naturwissenschaften; 2007 Mar; 94(3):170-82. PubMed ID: 17103136
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Factors Influencing CO
    Naraharisetti PK; Yeo TY; Bu J
    Chemphyschem; 2017 Nov; 18(22):3189-3202. PubMed ID: 28639317
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reducing the cost of Ca-based direct air capture of CO2.
    Zeman F
    Environ Sci Technol; 2014 Oct; 48(19):11730-5. PubMed ID: 25207956
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Coal and biomass to fuels and power.
    Williams RH; Liu G; Kreutz TG; Larson ED
    Annu Rev Chem Biomol Eng; 2011; 2():529-53. PubMed ID: 22432630
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.
    Heo J; McCoy ST; Adams PJ
    Environ Sci Technol; 2015 Apr; 49(8):5142-50. PubMed ID: 25811231
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Influence of methane in CO2 transport and storage for CCS technology.
    Blanco ST; Rivas C; Fernández J; Artal M; Velasco I
    Environ Sci Technol; 2012 Dec; 46(23):13016-23. PubMed ID: 23150938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.