These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30182419)

  • 1. Active Sites on Nickel-Promoted Transition-Metal Sulfides That Catalyze Hydrogenation of Aromatic Compounds.
    Luo W; Shi H; Schachtl E; Gutiérrez OY; Lercher JA
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14555-14559. PubMed ID: 30182419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing Active Site Concentrations at Ni-Substituted WS
    Luo W; Shi H; Wagenhofer M; Gutiérrez O; Lercher J
    J Phys Chem Lett; 2019 Sep; 10(18):5617-5622. PubMed ID: 31469280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing hydrogenation activity of Ni-Mo sulfide hydrodesulfurization catalysts.
    Wagenhofer MF; Shi H; Gutiérrez OY; Jentys A; Lercher JA
    Sci Adv; 2020 May; 6(19):eaax5331. PubMed ID: 32426483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways for H2 Activation on (Ni)-MoS2 Catalysts.
    Schachtl E; Kondratieva E; Gutiérrez OY; Lercher JA
    J Phys Chem Lett; 2015 Aug; 6(15):2929-32. PubMed ID: 26267183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and atomic-scale structure of single-layer WS2 nanoclusters.
    Füchtbauer HG; Tuxen AK; Moses PG; Topsøe H; Besenbacher F; Lauritsen JV
    Phys Chem Chem Phys; 2013 Oct; 15(38):15971-80. PubMed ID: 23959329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steric Hindrance- and Work Function-Promoted High Performance for Electrochemical CO Methanation on Antisite Defects of MoS
    Yao X; Chen ZW; Liu GJ; Lang XY; Zhu YF; Gao W; Jiang Q
    ChemSusChem; 2021 May; 14(10):2255-2261. PubMed ID: 33851508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental simulations of sulfide formation in the solar nebula.
    Lauretta DS; Lodders K; Fegley B
    Science; 1997 Jul; 277(5324):358-60. PubMed ID: 9219690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism of nickel sulfide atomic layer deposition using bis(
    Zhang X; Zhou Z; Xu R; Guo J; Xu L; Ding Y; Xiao H; Li X; Li A; Fang G
    Phys Chem Chem Phys; 2023 May; 25(19):13465-13473. PubMed ID: 37132216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT insights into the hydrodenitrogenation mechanism of quinoline catalyzed by different Ni-promoted MoS
    Zheng P; Xiao C; Song S; Duan A; Xu C
    J Hazard Mater; 2021 Jun; 411():125127. PubMed ID: 33485219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pocketlike Active Site of Rh
    Lou Y; Zheng Y; Li X; Ta N; Xu J; Nie Y; Cho K; Liu J
    J Am Chem Soc; 2019 Dec; 141(49):19289-19295. PubMed ID: 31680520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen evolution from water through metal sulfide reactions.
    Saha A; Raghavachari K
    J Chem Phys; 2013 Nov; 139(20):204301. PubMed ID: 24289348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zeolite-Stabilized Di- and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites.
    Weindl R; Khare R; Kovarik L; Jentys A; Reuter K; Shi H; Lercher JA
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9301-9305. PubMed ID: 33576131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study.
    Tsai C; Chan K; Abild-Pedersen F; Nørskov JK
    Phys Chem Chem Phys; 2014 Jul; 16(26):13156-64. PubMed ID: 24866567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Di- and Tetrameric Molybdenum Sulfide Clusters Activate and Stabilize Dihydrogen as Hydrides.
    Khare R; Weindl R; Jentys A; Reuter K; Shi H; Lercher JA
    JACS Au; 2022 Mar; 2(3):613-622. PubMed ID: 35373212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New metal-rich sulfides Ni(6)SnS(2) and Ni(9)Sn(2)S(2) with a 2D metal framework: synthesis, crystal structure, and bonding.
    Baranov AI; Isaeva AA; Kloo L; Popovkin BA
    Inorg Chem; 2003 Oct; 42(21):6667-72. PubMed ID: 14552618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum-Incorporated Mesoporous Silica: Surface Engineering toward Enhanced Metal-Support Interactions and Efficient Hydrogenation.
    Chen T; Shi Z; Zhang G; Chan HC; Shu Y; Gao Q; Tang Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42475-42483. PubMed ID: 30456945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation.
    Cammarota RC; Lu CC
    J Am Chem Soc; 2015 Oct; 137(39):12486-9. PubMed ID: 26378748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor.
    Riley C; Zhou S; Kunwar D; De La Riva A; Peterson E; Payne R; Gao L; Lin S; Guo H; Datye A
    J Am Chem Soc; 2018 Oct; 140(40):12964-12973. PubMed ID: 30222338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.