These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30182743)

  • 1. Ambient dose during intra-oral radiography with current techniques: Part 2 quantifying the remnant beam - an in vivo study.
    Hoogeveen RC; Pfältzer CC; Berkhout W
    Dentomaxillofac Radiol; 2018 Oct; 47(7):20180205. PubMed ID: 30182743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient dose during intraoral radiography with current techniques: part 3: effect of tube voltage.
    Hoogeveen RC; van Beest D; Berkhout E
    Dentomaxillofac Radiol; 2021 May; 50(4):20190362. PubMed ID: 33180551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambient dose during intraoral radiography with current techniques: Part 1 conversion factor for scattered radiation using a rectangular collimator.
    Hoogeveen RC; de Randamie TI; Soemodihardjo GM; Berkhout W
    Dentomaxillofac Radiol; 2018 Oct; 47(7):20180108. PubMed ID: 30028183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-coupled device panoramic radiography: effect of beam energy on radiation exposure.
    Farman TT; Farman AG; Kelly MS; Firriolo FJ; Yancey JM; Stewart AV
    Dentomaxillofac Radiol; 1998 Jan; 27(1):36-40. PubMed ID: 9482021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiographic assessment of the marginal bone level after implant treatment: a comparison of periapical and Scanora detailed narrow beam radiography.
    Lofthag-Hansen S; Lindh C; Petersson A
    Dentomaxillofac Radiol; 2003 Mar; 32(2):97-103. PubMed ID: 12775663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ absorbed doses in intraoral dental radiography.
    Lecomber AR; Faulkner K
    Br J Radiol; 1993 Nov; 66(791):1035-41. PubMed ID: 8281379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The detection of periapical pathosis using digital periapical radiography and cone beam computed tomography - part 2: a 1-year post-treatment follow-up.
    Patel S; Wilson R; Dawood A; Foschi F; Mannocci F
    Int Endod J; 2012 Aug; 45(8):711-23. PubMed ID: 22775142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone beam computed tomography radiation dose and image quality assessments.
    Lofthag-Hansen S
    Swed Dent J Suppl; 2010; (209):4-55. PubMed ID: 21229915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the milliamperage settings on cone beam computed tomography imaging for implant planning.
    Vasconcelos TV; Neves FS; Queiroz de Freitas D; Campos PS; Watanabe PC
    Int J Oral Maxillofac Implants; 2014; 29(6):1364-8. PubMed ID: 25265127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periapical radiography and cone beam computed tomography for assessment of the periapical bone defect 1 week and 12 months after root-end resection.
    Christiansen R; Kirkevang LL; Gotfredsen E; Wenzel A
    Dentomaxillofac Radiol; 2009 Dec; 38(8):531-6. PubMed ID: 20026710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The detection of periapical pathosis using periapical radiography and cone beam computed tomography - part 1: pre-operative status.
    Patel S; Wilson R; Dawood A; Mannocci F
    Int Endod J; 2012 Aug; 45(8):702-10. PubMed ID: 22188219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of image quality and radiation exposure for dental radiographs produced using a charge-coupled device and a phosphor plate system.
    Farrier SL; Drage NA; Newcombe RG; Hayes SJ; Dummer PM
    Int Endod J; 2009 Oct; 42(10):900-7. PubMed ID: 19548931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cone-beam computed tomographic scans in comparison with periapical radiographs for root canal length measurement: an in situ study.
    Metska ME; Liem VM; Parsa A; Koolstra JH; Wesselink PR; Ozok AR
    J Endod; 2014 Aug; 40(8):1206-9. PubMed ID: 25069934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between bitewing and periapical radiographs in assessing crestal alveolar bone levels.
    Reed BE; Polson AM
    J Periodontol; 1984 Jan; 55(1):22-7. PubMed ID: 6582261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proposals for revised factors in intra-oral radiography shielding calculations.
    Worrall M; McVey S; Sutton DG
    J Radiol Prot; 2012 Sep; 32(3):243-9. PubMed ID: 22809656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observer performance based on marginal bone tissue visibility in Scanora panoramic radiography and posterior bitewing radiography.
    Ivanauskaite D; Lindh C; Rohlin M
    Stomatologija; 2008; 10(1):36-43. PubMed ID: 18493164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoral versus extraoral bitewing radiography in detection of enamel proximal caries: an ex vivo study.
    Abu El-Ela WH; Farid MM; Mostafa MS
    Dentomaxillofac Radiol; 2016; 45(4):20150326. PubMed ID: 26892946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subjective image quality of solid-state and photostimulable phosphor systems for digital intra-oral radiography.
    Borg E; Attaelmanan A; Gröndahl HG
    Dentomaxillofac Radiol; 2000 Mar; 29(2):70-5. PubMed ID: 10808218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose area product measurement for diagnostic reference levels and analysis of patient dose in dental radiography.
    Han S; Lee B; Shin G; Choi J; Kim J; Park C; Park H; Lee K; Kim Y
    Radiat Prot Dosimetry; 2012 Jul; 150(4):523-31. PubMed ID: 22147923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early prediction of maxillary canine impaction.
    Alqerban A; Storms AS; Voet M; Fieuws S; Willems G
    Dentomaxillofac Radiol; 2016; 45(3):20150232. PubMed ID: 26683426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.