These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 30182748)
1. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity Furuhama A; Hayashi TI; Yamamoto H SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748 [TBL] [Abstract][Full Text] [Related]
2. Development of QSAAR and QAAR models for predicting fish early-life stage toxicity with a focus on industrial chemicals. Furuhama A; Hayashi TI; Yamamoto H SAR QSAR Environ Res; 2019 Nov; 30(11):825-846. PubMed ID: 31607178 [TBL] [Abstract][Full Text] [Related]
3. External validation of acute-to-chronic models for estimation of reproductive toxicity to Daphnia magna. Furuhama A; Hayashi TI; Yamamoto H; Tatarazako N SAR QSAR Environ Res; 2017 Sep; 28(9):765-781. PubMed ID: 29022371 [TBL] [Abstract][Full Text] [Related]
4. Prediction of acute toxicity to Wu X; Guo J; Dang G; Sui X; Zhang Q SAR QSAR Environ Res; 2022 Aug; 33(8):583-600. PubMed ID: 35862554 [TBL] [Abstract][Full Text] [Related]
5. Interspecies quantitative structure-activity-activity relationships (QSAARs) for prediction of acute aquatic toxicity of aromatic amines and phenols. Furuhama A; Hasunuma K; Aoki Y SAR QSAR Environ Res; 2015; 26(4):301-23. PubMed ID: 25887636 [TBL] [Abstract][Full Text] [Related]
6. Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products. Sangion A; Gramatica P SAR QSAR Environ Res; 2016 Oct; 27(10):781-798. PubMed ID: 27775436 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of oil sands acid-extractable organic fractions to freshwater fish: Pimephales promelas (fathead minnow) and Oryzias latipes (Japanese medaka). Bauer AE; Frank RA; Headley JV; Peru KM; Farwell AJ; Dixon DG Chemosphere; 2017 Mar; 171():168-176. PubMed ID: 28013078 [TBL] [Abstract][Full Text] [Related]
8. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559 [TBL] [Abstract][Full Text] [Related]
9. Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas. Levine SL; von Mérey G; Minderhout T; Manson P; Sutton P Environ Toxicol Chem; 2015 Jun; 34(6):1382-9. PubMed ID: 25690938 [TBL] [Abstract][Full Text] [Related]
10. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas). Cassotti M; Ballabio D; Todeschini R; Consonni V SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951 [TBL] [Abstract][Full Text] [Related]
11. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish. Tebby C; Mombelli E; Pandard P; Péry AR Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579 [TBL] [Abstract][Full Text] [Related]
12. Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas. Dobbins LL; Usenko S; Brain RA; Brooks BW Environ Toxicol Chem; 2009 Dec; 28(12):2744-53. PubMed ID: 19653701 [TBL] [Abstract][Full Text] [Related]
13. Fish early life stage toxicity prediction from acute daphnid toxicity and quantum chemistry. Schmidt S; Schindler M; Faber D; Hager J SAR QSAR Environ Res; 2021 Feb; 32(2):151-174. PubMed ID: 33525942 [TBL] [Abstract][Full Text] [Related]
14. Development of in silico models for predicting LSER molecular parameters and for acute toxicity prediction to fathead minnow (Pimephales promelas). Lyakurwa FS; Yang X; Li X; Qiao X; Chen J Chemosphere; 2014 Aug; 108():17-25. PubMed ID: 24875907 [TBL] [Abstract][Full Text] [Related]
15. A linear model to predict chronic effects of chemicals on Daphnia magna. Mombelli E; Pery AR Bull Environ Contam Toxicol; 2011 Nov; 87(5):494-8. PubMed ID: 21909626 [TBL] [Abstract][Full Text] [Related]
16. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
17. Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes. Kim Y; Jung J; Oh S; Choi K J Environ Sci Health B; 2008 Jan; 43(1):56-64. PubMed ID: 18161574 [TBL] [Abstract][Full Text] [Related]
18. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). Papa E; Villa F; Gramatica P J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902 [TBL] [Abstract][Full Text] [Related]
19. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Kim J; Kim S; Lee S Nanotoxicology; 2011 Jun; 5(2):208-14. PubMed ID: 20804438 [TBL] [Abstract][Full Text] [Related]