These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 30182999)

  • 41. High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation.
    Capilla MT; Talavera CF
    J Opt Soc Am A Opt Image Sci Vis; 2019 Jan; 36(1):38-50. PubMed ID: 30645337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monte Carlo simulation of light transport in turbid medium with embedded object--spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues.
    Periyasamy V; Pramanik M
    J Biomed Opt; 2014 Apr; 19(4):045003. PubMed ID: 24727908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue.
    Montejo LD; Klose AD; Hielscher AH
    Biomed Opt Express; 2010 Sep; 1(3):861-878. PubMed ID: 21258514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accurate radiative transfer calculations for layered media.
    Selden AC
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):1409-14. PubMed ID: 27409700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exact and efficient solution of the radiative transport equation for the semi-infinite medium.
    Liemert A; Kienle A
    Sci Rep; 2013; 3():2018. PubMed ID: 23774820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study on the propagation of ultra-short pulse light in cylindrical optical phantoms.
    Sassaroli A; Martelli F; Imai D; Yamada Y
    Phys Med Biol; 1999 Nov; 44(11):2747-63. PubMed ID: 10588282
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-scattering solutions to radiative transfer in infinite turbid media.
    Shendeleva ML
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2169-74. PubMed ID: 24322913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A; Lu R; Xie L
    Appl Opt; 2016 Jan; 55(1):95-103. PubMed ID: 26835627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
    Hokr BH; Bixler JN; Elpers G; Zollars B; Thomas RJ; Yakovlev VV; Scully MO
    Opt Express; 2015 Apr; 23(7):8699-705. PubMed ID: 25968708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Green's function of the time-dependent radiative transport equation in terms of rotated spherical harmonics.
    Liemert A; Kienle A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036603. PubMed ID: 23031041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-domain solution to the radiative transfer equation in an infinite turbid medium with linearly anisotropic scattering.
    Shendeleva ML
    J Opt Soc Am A Opt Image Sci Vis; 2015 Mar; 32(3):471-7. PubMed ID: 26366659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light diffusion in a turbid cylinder. II. Layered case.
    Liemert A; Kienle A
    Opt Express; 2010 Apr; 18(9):9266-79. PubMed ID: 20588774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analytical solution of the vector radiative transfer equation for single scattered radiance.
    Hank P; Liemert A; Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2022 Nov; 39(11):2045-2053. PubMed ID: 36520701
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generalized Kubelka-Munk approximation for multiple scattering of polarized light.
    Sandoval C; Kim AD
    J Opt Soc Am A Opt Image Sci Vis; 2017 Feb; 34(2):153-160. PubMed ID: 28157841
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.
    Budak VP; Kaloshin GA; Shagalov OV; Zheltov VS
    Opt Express; 2015 Jul; 23(15):A829-40. PubMed ID: 26367684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results.
    Martelli F; Contini D; Taddeucci A; Zaccanti G
    Appl Opt; 1997 Jul; 36(19):4600-12. PubMed ID: 18259255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography.
    Yuan Z; Hu XH; Jiang H
    Phys Med Biol; 2009 Jan; 54(1):65-88. PubMed ID: 19060361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study.
    Zonios G; Dimou A
    Biomed Opt Express; 2011 Dec; 2(12):3284-94. PubMed ID: 22162819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the telegrapher's equation and multiple-flux theories for calculating the transmittance and reflectance of a diffuse absorbing slab.
    Kong SH; Shore JD
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):702-10. PubMed ID: 17301860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.